A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres
Type
ArticleKAUST Department
Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2015Permanent link to this record
http://hdl.handle.net/10754/594304
Metadata
Show full item recordAbstract
Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.Citation
Tai Y, Mulle M, Aguilar Ventura I, Lubineau G (2015) A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres. Nanoscale 7: 14766–14773. Available: http://dx.doi.org/10.1039/c5nr03155a.Publisher
Royal Society of Chemistry (RSC)Journal
NanoscalePubMed ID
26288336ae974a485f413a2113503eed53cd6c53
10.1039/c5nr03155a
Scopus Count
Related articles
- Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring.
- Authors: Dong W, Yao D, Yang L
- Issue date: 2020 Mar 15
- Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces.
- Authors: Chang H, Kim S, Jin S, Lee SW, Yang GT, Lee KY, Yi H
- Issue date: 2018 Jan 10
- Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion.
- Authors: Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, Kim SG
- Issue date: 2015 Jun 23
- Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.
- Authors: Park H, Jeong YR, Yun J, Hong SY, Jin S, Lee SJ, Zi G, Ha JS
- Issue date: 2015 Oct 27
- Wearable Piezoresistive Sensors with Ultrawide Pressure Range and Circuit Compatibility Based on Conductive-Island-Bridging Nanonetworks.
- Authors: Chang H, Kim S, Kang TH, Lee SW, Yang GT, Lee KY, Yi H
- Issue date: 2019 Sep 4