Substructuring preconditioners for an h-p domain decomposition method with interior penalty mortaring
Type
ArticleKAUST Department
Center for Uncertainty Quantification in Computational Science and Engineering (SRI-UQ)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Date
2014-05-13Online Publication Date
2014-05-13Print Publication Date
2015-09Permanent link to this record
http://hdl.handle.net/10754/594297
Metadata
Show full item recordAbstract
We propose and study an iterative substructuring method for an h-p Nitsche-type discretization, following the original approach introduced in Bramble et al. Math. Comp. 47(175):103–134, (1986) for conforming methods. We prove quasi-optimality with respect to the mesh size and the polynomial degree for the proposed preconditioner. Numerical experiments assess the performance of the preconditioner and verify the theory. © 2014, Springer-Verlag Italia.Citation
Antonietti PF, Ayuso de Dios B, Bertoluzza S, Pennacchio M (2014) Substructuring preconditioners for an $$h$$ h - $$p$$ p domain decomposition method with interior penalty mortaring. Calcolo 52: 289–316. Available: http://dx.doi.org/10.1007/s10092-014-0117-9.Sponsors
MTM2011-27739-C04-04, MINECO, Ministerio de Economía y CompetitividadPublisher
Springer NatureJournal
Calcoloae974a485f413a2113503eed53cd6c53
10.1007/s10092-014-0117-9