• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bessaih, Hakima
    Efendiev, Yalchin R. cc
    Maris, Florin
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Numerical Porous Media SRI Center (NumPor)
    Date
    2015-04
    Permanent link to this record
    http://hdl.handle.net/10754/594230
    
    Metadata
    Show full item record
    Abstract
    The evolution Stokes equation in a domain containing periodically distributed obstacles subject to Fourier boundary condition on the boundaries is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the obstacles. We represent the solid obstacles by holes in the fluid domain. The macroscopic (homogenized) equation is derived as another stochastic partial differential equation, defined in the whole non perforated domain. Here, the initial stochastic perturbation on the boundary becomes part of the homogenized equation as another stochastic force. We use the twoscale convergence method after extending the solution with 0 in the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. In order to pass to the limit on the boundary integrals, we rewrite them in terms of integrals in the whole domain. In particular, for the stochastic integral on the boundary, we combine the previous idea of rewriting it on the whole domain with the assumption that the Brownian motion is of trace class. Due to the particular boundary condition dealt with, we get that the solution of the stochastic homogenized equation is not divergence free. However, it is coupled with the cell problem that has a divergence free solution. This paper represents an extension of the results of Duan and Wang (Comm. Math. Phys. 275:1508-1527, 2007), where a reaction diffusion equation with a dynamical boundary condition with a noise source term on both the interior of the domain and on the boundary was studied, and through a tightness argument and a pointwise two scale convergence method the homogenized equation was derived. © American Institute of Mathematical Sciences.
    Citation
    Maris F, Efendiev Y, Bessaih H (2015) Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. NHM 10: 343–367. Available: http://dx.doi.org/10.3934/nhm.2015.10.343.
    Sponsors
    This project started when Hakima Bessaih was visiting the Numerical Porous Media (NumPor) SRI Center at KAUST. She would like to thank the NumPor for the financial support, the excellent working atmosphere and the warm hospitality. H.B. was supported in part by the Simons Foundation grant #283308, the NSF grants DMS-1416689 and DMS-1418838. YE's work is partially supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award Number DE-FG02-13ER26165 and the DoD Army ARO Project.
    Publisher
    American Institute of Mathematical Sciences (AIMS)
    Journal
    Networks and Heterogeneous Media
    DOI
    10.3934/nhm.2015.10.343
    arXiv
    1402.6374
    ae974a485f413a2113503eed53cd6c53
    10.3934/nhm.2015.10.343
    Scopus Count
    Collections
    Articles; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.