Show simple item record

dc.contributor.authorLiu, Jinxing
dc.contributor.authorEl Sayed, Tamer S.
dc.date.accessioned2016-01-19T13:23:05Z
dc.date.available2016-01-19T13:23:05Z
dc.date.issued2012-11-27
dc.identifier.citationLiu JX, El Sayed T (2012) Constitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs). Modelling Simul Mater Sci Eng 21: 015001. Available: http://dx.doi.org/10.1088/0965-0393/21/1/015001.
dc.identifier.issn0965-0393
dc.identifier.issn1361-651X
dc.identifier.doi10.1088/0965-0393/21/1/015001
dc.identifier.urihttp://hdl.handle.net/10754/594169
dc.description.abstractMicro-voids of varying sizes exist in most metals and alloys. Both experiments and numerical studies have demonstrated the critical influence of initial void sizes on void growth. The classical Gurson-Tvergaard-Needleman model summarizes the influence of voids with a single parameter, namely the void-volume fraction, excluding any possible effects of the void-size distribution. We extend our newly proposed model including the multi-sized void (MSV) effect and the void-interaction effect for the capability of working for both moderate and high loading rate cases, where either rate dependence or microinertia becomes considerable or even dominant. Parametric studies show that the MSV-related competitive mechanism among void growth leads to the dependence of the void growth rate on void size, which directly influences the void's contribution to the total energy composition. We finally show that the stress-strain constitutive behavior is also affected by this MSV-related competitive mechanism. The stabilizing effect due to rate sensitivity and microinertia is emphasized. © 2013 IOP Publishing Ltd.
dc.description.sponsorshipThis work was fully funded by the KAUST baseline fund. The authors would like to thank the reviewers for their valuable corrections and suggestions. Our thanks are also given to Ms. Lauratu Osu for her careful proofreading.
dc.publisherIOP Publishing
dc.titleConstitutive modeling of rate dependence and microinertia effects in porous-plastic materials with multi-sized voids (MSVs)
dc.typeArticle
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.identifier.journalModelling and Simulation in Materials Science and Engineering
kaust.personLiu, Jinxing
kaust.personEl Sayed, Tamer S.
dc.date.published-online2012-11-27
dc.date.published-print2013-01-01


This item appears in the following Collection(s)

Show simple item record