• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Obstacle mean-field game problem

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Gomes, Diogo A. cc
    Patrizi, Stefania
    KAUST Department
    Applied Mathematics and Computational Science Program
    Center for Uncertainty Quantification in Computational Science and Engineering (SRI-UQ)
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/594150
    
    Metadata
    Show full item record
    Abstract
    In this paper, we introduce and study a first-order mean-field game obstacle problem. We examine the case of local dependence on the measure under assumptions that include both the logarithmic case and power-like nonlinearities. Since the obstacle operator is not differentiable, the equations for first-order mean field game problems have to be discussed carefully. Hence, we begin by considering a penalized problem. We prove this problem admits a unique solution satisfying uniform bounds. These bounds serve to pass to the limit in the penalized problem and to characterize the limiting equations. Finally, we prove uniqueness of solutions. © European Mathematical Society 2015.
    Citation
    Gomes D, Patrizi S (2015) Obstacle mean-field game problem. Interfaces and Free Boundaries 17: 55–68. Available: http://dx.doi.org/10.4171/ifb/333.
    Sponsors
    KAUST, King Abdullah University of Science and Technology
    Publisher
    European Mathematical Society - EMS - Publishing House GmbH
    Journal
    Interfaces and Free Boundaries
    DOI
    10.4171/ifb/333
    ae974a485f413a2113503eed53cd6c53
    10.4171/ifb/333
    Scopus Count
    Collections
    Articles; Applied Mathematics and Computational Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.