Materials Meets Concepts in Molecule-Based Electronics

Type
Article

Authors
Ortmann, Frank
Radke, K. Sebastian
Günther, Alrun
Kasemann, Daniel
Leo, Karl
Cuniberti, Gianaurelio

KAUST Department
KAUST Solar Center (KSC)
Physical Science and Engineering (PSE) Division

Online Publication Date
2014-10-14

Print Publication Date
2015-04

Date
2014-10-14

Abstract
In this contribution, molecular materials are highlighted as an important topic in the diverse field of condensed matter physics, with focus on their particular electronic and transport properties. A better understanding of their performance in various applications and devices demands for an extension of basic theoretical approaches to describe charge transport in molecular materials, including the accurate description of electron-phonon coupling. Starting with the simplest case of a molecular junction and moving on to larger aggregates of bulk organic semiconductors, charge-transport regimes from ballistic motion to incoherent hopping, which are frequently encountered in molecular systems under respective conditions, are discussed. Transport features of specific materials are described through ab initio material parameters whose determination is addressed. © 2014 Wiley-VCH Verlag GmbH & Co. KGaA.

Citation
Ortmann F, Radke KS, Günther A, Kasemann D, Leo K, et al. (2014) Materials Meets Concepts in Molecule-Based Electronics. Advanced Functional Materials 25: 1933–1954. Available: http://dx.doi.org/10.1002/adfm.201402334.

Acknowledgements
This work is partly based on original research of H. Kleemann, D. Nozaki, and K. Hannewald. The authors gratefully acknowledge fruitful discussions with all of them. F.O. would like to thank the DFG for financial support within the Emmy-Noether funding scheme and A.G. thanks the Dr. Isolde-Dietrich-Stiftung for its financial support. This work was partly supported by the DFG within the Cluster of Excellence "Center for Advancing Electronics Dresden". The authors acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources.

Publisher
Wiley

Journal
Advanced Functional Materials

DOI
10.1002/adfm.201402334

Permanent link to this record