Interpolation of daily rainfall using spatiotemporal models and clustering
Type
ArticleKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionStatistics Program
Date
2014-06-11Online Publication Date
2014-06-11Print Publication Date
2015-06-15Permanent link to this record
http://hdl.handle.net/10754/594086
Metadata
Show full item recordAbstract
Accumulated daily rainfall in non-observed locations on a particular day is frequently required as input to decision-making tools in precision agriculture or for hydrological or meteorological studies. Various solutions and estimation procedures have been proposed in the literature depending on the auxiliary information and the availability of data, but most such solutions are oriented to interpolating spatial data without incorporating temporal dependence. When data are available in space and time, spatiotemporal models usually provide better solutions. Here, we analyse the performance of three spatiotemporal models fitted to the whole sampled set and to clusters within the sampled set. The data consists of daily observations collected from 87 manual rainfall gauges from 1990 to 2010 in Navarre, Spain. The accuracy and precision of the interpolated data are compared with real data from 33 automated rainfall gauges in the same region, but placed in different locations than the manual rainfall gauges. Root mean squared error by months and by year are also provided. To illustrate these models, we also map interpolated daily precipitations and standard errors on a 1km2 grid in the whole region. © 2014 Royal Meteorological Society.Citation
Militino AF, Ugarte MD, Goicoa T, Genton M (2014) Interpolation of daily rainfall using spatiotemporal models and clustering. Int J Climatol 35: 1453–1464. Available: http://dx.doi.org/10.1002/joc.4068.Sponsors
Spanish Ministry of Science and EducationPublisher
WileyDOI
10.1002/joc.4068ae974a485f413a2113503eed53cd6c53
10.1002/joc.4068