• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Yuan, Zhongcheng
    Wu, Zhongwei
    Bai, Sai
    Cui, Wei
    Liu, Jie
    Song, Tao
    Sun, Baoquan
    KAUST Department
    KAUST Solar Center (KSC)
    Physical Science and Engineering (PSE) Division
    Date
    2015-11
    Permanent link to this record
    http://hdl.handle.net/10754/594082
    
    Metadata
    Show full item record
    Abstract
    Abstract Layered bismuth selenide (L-Bi2Se3) nanoplates were implemented as hole transporting layers (HTLs) for inverted organic solar cells. Device based on L-Bi2Se3 showed increasing power conversion efficiency (PCE) during ambient condition storage process. A PCE of 4.37% was finally obtained after 5 days storage, which outperformed the ones with evaporated-MoO3 using poly(3-hexylthiophene) (P3HT) as donor material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor. The improved device efficiency can be attributed to the high conductivity and increasing work function of L-Bi2Se3. The work function of L-Bi2Se3 increased with the storage time in ambient condition due to the oxygen atom doping. Ultraviolet photoelectron spectroscopy and high resolution X-ray photoelectron spectroscopy were conducted to verify the increased work function, which originated from the p-type doping process. The device based on L-Bi2Se3 exhibited excellent stability in ambient condition up to 4 months, which was much improved compared to the device based on traditional HTLs. © 2015 Elsevier B.V.
    Citation
    Yuan Z, Wu Z, Bai S, Cui W, Liu J, et al. (2015) Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics. Organic Electronics 26: 327–333. Available: http://dx.doi.org/10.1016/j.orgel.2015.07.005.
    Sponsors
    National Natural Science Foundation of China[61176057, 91123005, 61211130358]
    National Basic Research Program of China[2012CB932402]
    Publisher
    Elsevier BV
    Journal
    Organic Electronics
    DOI
    10.1016/j.orgel.2015.07.005
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.orgel.2015.07.005
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.