• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Atiqullah, M.
    Winston, M. S.
    Bercaw, J. E.
    Hussain, I.
    Fazal, A.
    Al-Harthi, M. A.
    Emwas, A. H M
    Khan, M. J.
    Hossaen, A.
    KAUST Department
    KAUST Center In Development at KFUPM
    Imaging and Characterization Core Lab
    Date
    2012-07
    Permanent link to this record
    http://hdl.handle.net/10754/594071
    
    Metadata
    Show full item record
    Abstract
    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was modeled from a nanoscopic viewpoint. The accumulation of the above oxygenated functionalities and its effect on % crystallinity are explained considering polyethylene UV autooxidation mechanism, and Norrish I and Norrish II chain scissions. © 2012 Elsevier Ltd. All rights reserved.
    Citation
    Atiqullah M, Winston MS, Bercaw JE, Hussain I, Fazal A, et al. (2012) Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film. Polymer Degradation and Stability 97: 1164–1177. Available: http://dx.doi.org/10.1016/j.polymdegradstab.2012.03.042.
    Sponsors
    The authors thank the King Abdullah University of Science & Technology (KAUST) Center-in-Development for Transformative Research in Petrochemicals and Polymers, established at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia for supporting this research. The technical assistances provided by the Department of Chemistry and Chemical Engineering at California Institute of Technology (Caltech), Pasadena, USA; the King Fahd University of Petroleum & Minerals (KFUPM) Center of Refining & Petrochemicals (CRP) at the Research Institute, the Center of Research Excellence in Petroleum Refining & Petrochemicals (CoRE-PRP), and the Department of Chemical Engineering; Polymer Char, Spain; and KAUST are also gratefully acknowledged. The authors also thank Jubail United Petrochemical Company for donating 1-hexene.
    Publisher
    Elsevier BV
    Journal
    Polymer Degradation and Stability
    DOI
    10.1016/j.polymdegradstab.2012.03.042
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.polymdegradstab.2012.03.042
    Scopus Count
    Collections
    Articles; Imaging and Characterization Core Lab

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.