Improved nonparametric inference for multiple correlated periodic sequences

Type
Article

Authors
Sun, Ying
Hart, Jeffrey D.
Genton, Marc G.

KAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Statistics Program

Online Publication Date
2013-08-26

Print Publication Date
2013-12

Date
2013-08-26

Abstract
This paper proposes a cross-validation method for estimating the period as well as the values of multiple correlated periodic sequences when data are observed at evenly spaced time points. The period of interest is estimated conditional on the other correlated sequences. An alternative method for period estimation based on Akaike's information criterion is also discussed. The improvement of the period estimation performance is investigated both theoretically and by simulation. We apply the multivariate cross-validation method to the temperature data obtained from multiple ice cores, investigating the periodicity of the El Niño effect. Our methodology is also illustrated by estimating patients' cardiac cycle from different physiological signals, including arterial blood pressure, electrocardiography, and fingertip plethysmograph.

Citation
Sun Y, Hart JD, Genton MG (2013) Improved nonparametric inference for multiple correlated periodic sequences. Stat 2: 197–210. Available: http://dx.doi.org/10.1002/sta4.28.

Publisher
Wiley

Journal
Stat

DOI
10.1002/sta4.28

Permanent link to this record