Show simple item record

dc.contributor.authorLu, Kai
dc.contributor.authorAlTheyab, Abdullah
dc.contributor.authorSchuster, Gerard T.
dc.date.accessioned2016-01-13T10:02:11Z
dc.date.available2016-01-13T10:02:11Z
dc.date.issued2014-08-05
dc.identifier.citationKai Lu*, Abdullah AlTheyab, and Gerard T. Schuster (2014) 3D super-virtual refraction interferometry. SEG Technical Program Expanded Abstracts 2014: pp. 4203-4207. doi: 10.1190/segam2014-0822.1
dc.identifier.doi10.1190/segam2014-0822.1
dc.identifier.urihttp://hdl.handle.net/10754/593351
dc.description.abstractSuper-virtual refraction interferometry enhances the signal-to-noise ratio of far-offset refractions. However, when applied to 3D cases, traditional 2D SVI suffers because the stationary positions of the source-receiver pairs might be any place along the recording plane, not just along a receiver line. Moreover, the effect of enhancing the SNR can be limited because of the limitations in the number of survey lines, irregular line geometries, and azimuthal range of arrivals. We have developed a 3D SVI method to overcome these problems. By integrating along the source or receiver lines, the cross-correlation or the convolution result of a trace pair with the source or receiver at the stationary position can be calculated without the requirement of knowing the stationary locations. In addition, the amplitudes of the cross-correlation and convolution results are largely strengthened by integration, which is helpful to further enhance the SNR. In this paper, both synthetic and field data examples are presented, demonstrating that the super-virtual refractions generated by our method have accurate traveltimes and much improved SNR.
dc.language.isoen
dc.publisherSociety of Exploration Geophysicists
dc.relation.urlhttp://library.seg.org/doi/abs/10.1190/segam2014-0822.1
dc.rightsArchived with thanks to SEG Technical Program Expanded Abstracts 2014
dc.subject3D
dc.subjectnoise
dc.subjectrefraction
dc.subjecttraveltime
dc.title3D super-virtual refraction interferometry
dc.typeArticle
dc.contributor.departmentEarth Science and Engineering Program
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.identifier.journalSEG Technical Program Expanded Abstracts 2014
dc.eprint.versionPublisher's Version/PDF
dc.contributor.affiliationKing Abdullah University of Science and Technology (KAUST)
kaust.personLu, Kai
kaust.personAlTheyab, Abdullah
kaust.personSchuster, Gerard T.
refterms.dateFOA2018-06-13T14:57:00Z


Files in this item

Thumbnail
Name:
segam2014-08222E1.pdf
Size:
1.891Mb
Format:
PDF
Description:
Main article

This item appears in the following Collection(s)

Show simple item record