Full waveform inversion based on scattering angle enrichment with application to real dataset
Type
ArticleAuthors
Wu, Zedong
Alkhalifah, Tariq Ali

KAUST Department
Earth Science and Engineering ProgramPhysical Science and Engineering (PSE) Division
Seismic Wave Analysis Group
Date
2015-08-19Online Publication Date
2015-08-19Print Publication Date
2015-08-19Permanent link to this record
http://hdl.handle.net/10754/593151
Metadata
Show full item recordAbstract
Reflected waveform inversion (RWI) provides a method to reduce the nonlinearity of the standard full waveform inversion (FWI). However, the drawback of the existing RWI methods is inability to utilize diving waves and the extra sensitivity to the migrated image. We propose a combined FWI and RWI optimization problem through dividing the velocity into the background and perturbed components. We optimize both the background and perturbed components, as independent parameters. The new objective function is quadratic with respect to the perturbed component, which will reduce the nonlinearity of the optimization problem. Solving this optimization provides a true amplitude image and utilizes the diving waves to update the velocity of the shallow parts. To insure a proper wavenumber continuation, we use an efficient scattering angle filter to direct the inversion at the early stages to direct energy corresponding to large (smooth velocity) scattering angles to the background velocity update and the small (high wavenumber) scattering angles to the perturbed velocity update. This efficient implementation of the filter is fast and requires less memory than the conventional approach based on extended images. Thus, the new FWI procedure updates the background velocity mainly along the wavepath for both diving and reflected waves in the initial stages. At the same time, it updates the perturbation with mainly reflections (filtering out the diving waves). To demonstrate the capability of this method, we apply it to a real 2D marine dataset.Citation
Zhen-dong Zhang*, Yike Liu, and Gerard Schuster (2015) Wave Equation Inversion of Skeletonized SurfaceWaves. SEG Technical Program Expanded Abstracts 2015: pp. 2391-2395. doi: 10.1190/segam2015-5805253.1Publisher
Society of Exploration GeophysicistsAdditional Links
http://library.seg.org/doi/10.1190/segam2015-5922173.1ae974a485f413a2113503eed53cd6c53
10.1190/segam2015-5922173.1