Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)
Name:
1-s2.0-S0376738815304002-main.pdf
Size:
1.170Mb
Format:
PDF
Description:
Accepted Manuscript
Name:
1-s2.0-S0376738815304002-fx1.jpg
Size:
37.80Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleKAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2016-01-05Online Publication Date
2016-01-05Print Publication Date
2016-04Permanent link to this record
http://hdl.handle.net/10754/593144
Metadata
Show full item recordAbstract
Fine-tuning the microporosity of PIM-1 by heat treatment was applied to develop a suitable carbon molecular sieve membrane for ethylene/ethane separation. Pristine PIM-1 films were heated from 400 to 800 °C under inert N2 atmosphere (< 2 ppm O2). At 400 °C, PIM-1 self-cross-linked and developed polar carbonyl and hydroxyl groups due to partial dioxane splitting in the polymer backbone. Significant degradation occurred at 600 °C due to carbonization of PIM-1 and resulted in 30% increase in cumulative surface area compared to its cross-linked predecessor. In addition, PIM-1-based CMS developed smaller ultramicropores with increasing pyrolysis temperature, which enhanced their molecular sieving capability by restricted diffusion of ethylene and ethane through the matrix due to microstructural carbon densification. Consequently, the pure-gas ethylene permeability (measured at 35 °C and 2 bar) decreased from 1600 Barrer for the pristine PIM-1 to 1.3 Barrer for the amorphous carbon generated at 800 °C, whereas the ethylene/ethane pure-gas selectivity increased significantly from 1.8 to 13.Citation
Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1) 2016 Journal of Membrane SciencePublisher
Elsevier BVJournal
Journal of Membrane ScienceAdditional Links
http://linkinghub.elsevier.com/retrieve/pii/S0376738815304002ae974a485f413a2113503eed53cd6c53
10.1016/j.memsci.2015.12.052