Development and characterization of 3D-printed feed spacers for spiral wound membrane systems
Name:
1-s2.0-S0043135415304504-main.pdf
Size:
4.168Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Siddiqui, Amber
Farhat, Nadia

Bucs, Szilard

Valladares Linares, Rodrigo

Picioreanu, Cristian
Kruithof, Joop C.
van Loosdrecht, Mark C.M.

Kidwell, James
Vrouwenvelder, Johannes S.

KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionEnvironmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2016-01-02Online Publication Date
2016-01-02Print Publication Date
2016-03Permanent link to this record
http://hdl.handle.net/10754/592740
Metadata
Show full item recordAbstract
Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydraulic behavior of various feed spacer geometries suggested that the impact of spacers on hydraulics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydraulic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydraulic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of biofilm formation on membrane performance and to improve the cleanability of spiral-wound NF and RO membrane systems. The proposed strategy may also be suitable to develop spacers in e.g. forward osmosis (FO), reverse electrodialysis (RED), membrane distillation (MD), and electrodeionisation (EDI) membrane systems.Citation
Development and characterization of 3D-printed feed spacers for spiral wound membrane systems 2016 Water ResearchPublisher
Elsevier BVJournal
Water ResearchPubMed ID
26773488Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0043135415304504ae974a485f413a2113503eed53cd6c53
10.1016/j.watres.2015.12.052
Scopus Count
Related articles
- Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems.
- Authors: Bucs SS, Valladares Linares R, van Loosdrecht MC, Kruithof JC, Vrouwenvelder JS
- Issue date: 2014 Dec 15
- Fouling resilient perforated feed spacers for membrane filtration.
- Authors: Kerdi S, Qamar A, Vrouwenvelder JS, Ghaffour N
- Issue date: 2018 Sep 1
- Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators.
- Authors: Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS
- Issue date: 2017 Mar 1
- A novel scenario for biofouling control of spiral wound membrane systems.
- Authors: Vrouwenvelder JS, Van Loosdrecht MC, Kruithof JC
- Issue date: 2011 Jul
- Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem.
- Authors: Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MC
- Issue date: 2009 Feb