• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    •   Home
    • Theses and Dissertations
    • Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Organic Carbon Reduction in Seawater Reverse Osmosis (SWRO) Plants, Jeddah, Saudi Arabia

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Abdullah Alshahri Thesis.pdf
    Size:
    2.143Mb
    Format:
    PDF
    Description:
    Abdullah Alshahri Thesis
    Download
    Type
    Thesis
    Authors
    Alshahri, Abdullah cc
    Advisors
    Leiknes, TorOve cc
    Committee members
    Wang, Peng cc
    Peinemann, Klaus-Viktor cc
    Missimer, Thomas M.
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Sciences and Engineering (BESE) Division
    Date
    2015-12
    Permanent link to this record
    http://hdl.handle.net/10754/583560
    
    Metadata
    Show full item record
    Abstract
    Desalination is considered to be a major source of usable water in the Middle East, especially the Gulf countries which lack fresh water resources. A key and sometimes the only solution to produce high quality water in these countries is through the use of seawater reverse osmosis (SWRO) desalination technology. Membrane fouling is an economic and operational defect that impacts the performance of SWRO desalination technology. To limit this fouling phenomenon, it is important to implement the appropriate type of intake and pre-treatment system design. In this study, two types of systems were investigated, a vertical well system and a surface-water intake at a 9m depth. The purpose of this investigation is to study the impact of the different intake systems and pre-treatment stages in minimizing the concentrations of algae, bacteria, natural organic matter (NOM) and transparent exopolymer particles (TEP), in the feed water prior to pre-treatment, through the pre-treatment stages, and in the product water and concentrate. Water samples were collected from the surface seawater, the intakes (wells for site A, 9 m depth open ocean intake at site B), after the media filter, after the cartridge filter, and from the permeate and reject streams. The measured parameters included physical parameters, algae, bacteria, total organic carbon (TOC), fractions of dissolved NOM, particulate and colloidal TEP. The results of this study prove that the natural filtration and biological treatment of the seawater which occur in the aquifer matrix are very effective in improving the raw water quality to a significant degree. The results demonstrated that algae and biopolymers were 100% removed, the bacterial concentrations were significantly removed and roughly 50% or greater of TOC concentrations was eliminated by the aquifer matrix at site A. The aquifer feeding the vertical wells reduced TEP concentrations, but to differing degree. There is a slight decrease in the concentrations of, algae, bacteria, TOC, NOM, and TEP in the feed water at 9 m depth compared to the surface seawater at site B. The pre-treatment was of significant effectiveness and the improvements in reducing the membrane fouling potential were quite high and strong at this site. Investigation of the permeate stream showed some breakthrough of bacteria which is of concern because it may indicate a problem within the membrane system (e.g., broken seal and perforation). The aquifer feeding the wells in the subsurface system plays a main role in the improvement of water quality, so the pre-treatment seems less effective in site A plant. This proves that the subsurface intake is better than open ocean intake in terms of providing better raw water quality and ultimately reducing membrane biofouling.
    Citation
    Alshahri, A. (2015). Organic Carbon Reduction in Seawater Reverse Osmosis (SWRO) Plants, Jeddah, Saudi Arabia. KAUST Research Repository. https://doi.org/10.25781/KAUST-M9G19
    DOI
    10.25781/KAUST-M9G19
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-M9G19
    Scopus Count
    Collections
    Biological and Environmental Sciences and Engineering (BESE) Division; Environmental Science and Engineering Program; Theses

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.