• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Revised paper without highlights.pdf
    Size:
    4.270Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Uranakara, Harshavardhana A.
    Chaudhuri, Swetaprovo
    Dave, Himanshu L.
    Arias, Paul G.
    Im, Hong G. cc
    KAUST Department
    Clean Combustion Research Center
    Computational Reacting Flow Laboratory (CRFL)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2015-11-21
    Online Publication Date
    2015-11-21
    Print Publication Date
    2016-01
    Permanent link to this record
    http://hdl.handle.net/10754/583294
    
    Metadata
    Show full item record
    Abstract
    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.
    Citation
    A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames 2015 Combustion and Flame
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2015.09.033
    Additional Links
    http://linkinghub.elsevier.com/retrieve/pii/S0010218015003466
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2015.09.033
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

      Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In (Fuel, Elsevier BV, 2013-03) [Article]
      This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.
    • Thumbnail

      Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics

      Kedia, K.S.; Altay, H.M.; Ghoniem, A.F. (Proceedings of the Combustion Institute, Elsevier BV, 2011) [Article]
      In this paper, we numerically investigate the response of a perforated-plate stabilized laminar methane-air premixed flame to imposed inlet velocity perturbations. A flame model using detailed chemical kinetics mechanism is applied and heat exchange between the burner plate and the gas mixture is incorporated. Linear transfer functions, for low mean inlet velocity oscillations, are analyzed for different equivalence ratio, mean inlet velocity, plate thermal conductivity and distance between adjacent holes. The oscillations of the heat exchange rate at the top of the burner surface plays a critical role in driving the growth of the perturbations over a wide range of conditions, including resonance. The flame response to the perturbations at its base takes the form of consumption speed oscillations in this region. Flame stand-off distance increases/decreases when the flame-wall interaction strengthens/weakens, impacting the overall dynamics of the heat release. The convective lag between the perturbations and the flame base response govern the phase of heat release rate oscillations. There is an additional convective lag between the perturbations at the flame base and the flame tip which has a weaker impact on the heat release rate oscillations. At higher frequencies, the flame-wall interaction is weaker and the heat release oscillations are driven by the flame area oscillations. The response of the flame to higher amplitude oscillations are used to gain further insight into the mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.
    • Thumbnail

      Generalized flame surface density transport conditional on flow topologies for turbulent H2-air premixed flames in different regimes of combustion

      Chakraborty, N.; Papapostolou, V.; Wacks, D. H.; Klein, M.; Im, Hong G. (Numerical Heat Transfer, Part A: Applications, Informa UK Limited, 2019-01-22) [Article]
      The generalized flame surface density (FSD) transport conditional on local flow topologies in premixed turbulent flames has been analyzed based on a detailed chemistry direct numerical simulation database of statistically planar turbulent hydrogen-air premixed flames with an equivalence ratio of 0.7 representing the corrugated flamelets, thin reaction zones and broken reaction zones regimes of combustion. The local flow topologies have been categorized by the values of the three invariants of the velocity gradient tensor and the statistical behaviors of the generalized FSD and different terms of its transport equation conditional on these flow topologies have been analyzed in detail for different choices of the reaction progress variable. The qualitative behavior of the different terms of the generalized FSD transport equation has been found to be similar for different choices of reaction progress variable but the statistical behaviors of the tangential strain rate term and its components have been found to be affected by the regime of combustion. The topologies, which exist for all values of dilatation rate, contribute significantly to the generalized FSD transport in premixed turbulent flames for all regimes of combustion. An unstable nodal flow topology, which is representative of a counter-flow configuration, has been found to be a dominant contributor to the FSD transport for all regimes of combustion irrespective of the choice of reaction progress variable. Moreover, a focal topology which is obtained only for positive values of dilatation rate, has been found to contribute significantly, especially to the curvature and propagation terms of the FSD transport equation for all regimes of combustion including the broken reaction zones regime. However, the contributions of the flow topologies to the turbulent transport and tangential strain rate term, which are obtained only for positive dilatation rates, have been found to weaken from the corrugated flamelets to the broken reaction zones regime.
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.