Improving adhesion of copper/epoxy joints by pulsed laser ablation
Name:
manuscript_J1140_final.pdf
Size:
2.816Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleKAUST Department
Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2015-10-19Online Publication Date
2015-10-19Print Publication Date
2016-01Permanent link to this record
http://hdl.handle.net/10754/581763
Metadata
Show full item recordAbstract
The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.Citation
Improving adhesion of copper/epoxy joints by pulsed laser ablation 2016, 64:23 International Journal of Adhesion and AdhesivesPublisher
Elsevier BVAdditional Links
http://linkinghub.elsevier.com/retrieve/pii/S0143749615001566ae974a485f413a2113503eed53cd6c53
10.1016/j.ijadhadh.2015.10.003