Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines
Name:
1-s2.0-S0377042715004896-main.pdf
Size:
4.545Mb
Format:
PDF
Description:
Accepted Manuscript
Type
ArticleAuthors
Barton, Michael
Calo, Victor M.

KAUST Department
Numerical Porous Media SRI Center (NumPor)Applied Mathematics and Computational Science Program
Earth Science and Engineering Program
Date
2015-10-24Permanent link to this record
http://hdl.handle.net/10754/581502
Metadata
Show full item recordAbstract
We introduce a new concept for generating optimal quadrature rules for splines. To generate an optimal quadrature rule in a given (target) spline space, we build an associated source space with known optimal quadrature and transfer the rule from the source space to the target one, while preserving the number of quadrature points and therefore optimality. The quadrature nodes and weights are, considered as a higher-dimensional point, a zero of a particular system of polynomial equations. As the space is continuously deformed by changing the source knot vector, the quadrature rule gets updated using polynomial homotopy continuation. For example, starting with C1C1 cubic splines with uniform knot sequences, we demonstrate the methodology by deriving the optimal rules for uniform C2C2 cubic spline spaces where the rule was only conjectured to date. We validate our algorithm by showing that the resulting quadrature rule is independent of the path chosen between the target and the source knot vectors as well as the source rule chosen.Citation
Gaussian quadrature for splines via homotopy continuation: Rules for C2 cubic splines 2015 Journal of Computational and Applied MathematicsPublisher
Elsevier BVISSN
03770427Additional Links
http://linkinghub.elsevier.com/retrieve/pii/S0377042715004896ae974a485f413a2113503eed53cd6c53
10.1016/j.cam.2015.09.036