• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorBaker, Ruth E. (1)Byrne, Helen M. (1)Erban, Radek (1)Franz, Benjamin (1)Goriely, Alain (1)View MoreJournalDispersal, Individual Movement and Spatial Ecology (1)IFIP Advances in Information and Communication Technology (1)Methods in Molecular Biology (1)New Trends in the Physics and Mechanics of Biological Systems (1)Theory and Applications of Computability (1)KAUST Grant Number
    KUK-C1-013-04 (5)
    PublisherSpringer Nature (4)Oxford University Press (OUP) (1)SubjectAlgebraic methods (1)Asymptotic analysis (1)Convergence (1)Differential growth (1)Elasticity (1)View MoreType
    Book Chapter (5)
    Year (Issue Date)2017 (1)2015 (1)2014 (1)2013 (1)2011 (1)Item AvailabilityMetadata Only (5)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-5 of 5

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 5CSV
    • 5RefMan
    • 5EndNote
    • 5BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Morphoelasticity: A theory of elastic growth

    Goriely, Alain; Moulton, Derek (New Trends in the Physics and Mechanics of Biological Systems, Oxford University Press (OUP), 2011-10-11) [Book Chapter]
    This chapter is concerned with the modelling of growth processes in the framework of continuum mechanics and nonlinear elasticity. It begins by considering growth and deformation in a one-dimensional setting, illustrating the key relationship between growth, the elastic response of the material, and the generation of residual stresses. The general three-dimensional theory of morphoelasticity is then developed from conservation of mass and momentum balance equations. In the formulation, the multiplicative decomposition of the deformation tensor, the standard approach in morphoelasticity, is derived in a new way. A discussion of continuous growth is also included. The chapter concludes by working through a sample problem of a growing cylindrical tube. A stability analysis is formulated, and the effect of growth on mucosal folding, a commonly seen instability in biological tubes, is demonstrated.
    Thumbnail

    Mathematical and Statistical Techniques for Systems Medicine: The Wnt Signaling Pathway as a Case Study

    MacLean, Adam L.; Harrington, Heather A.; Stumpf, Michael P. H.; Byrne, Helen M. (Methods in Molecular Biology, Springer Nature, 2015-12-16) [Book Chapter]
    The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
    Thumbnail

    Turing’s Theory of Morphogenesis: Where We Started, Where We Are and Where We Want to Go

    Woolley, Thomas E.; Baker, Ruth E.; Maini, Philip K. (Theory and Applications of Computability, Springer Nature, 2017-05-06) [Book Chapter]
    Over 60 years have passed since Alan Turing first postulated a mechanism for biological pattern formation. Although Turing did not have the chance to extend his theories before his unfortunate death two years later, his work has not gone unnoticed. Indeed, many researchers have since taken up the gauntlet and extended his revolutionary and counter-intuitive ideas. Here, we reproduce the basics of his theory as well as review some of the recent generalisations and applications that have led our mathematical models to be closer representations of the biology than ever before. Finally, we take a look to the future and discuss open questions that not only show that there is still much life in the theory, but also that the best may be yet to come.
    Thumbnail

    Right-Hand Side Dependent Bounds for GMRES Applied to Ill-Posed Problems

    Pestana, Jennifer (IFIP Advances in Information and Communication Technology, Springer Nature, 2014-11-28) [Book Chapter]
    © IFIP International Federation for Information Processing 2014. In this paper we apply simple GMRES bounds to the nearly singular systems that arise in ill-posed problems. Our bounds depend on the eigenvalues of the coefficient matrix, the right-hand side vector and the nonnormality of the system. The bounds show that GMRES residuals initially decrease, as residual components associated with large eigenvalues are reduced, after which semi-convergence can be expected because of the effects of small eigenvalues.
    Thumbnail

    Hybrid Modelling of Individual Movement and Collective Behaviour

    Franz, Benjamin; Erban, Radek (Dispersal, Individual Movement and Spatial Ecology, Springer Nature, 2013-01-03) [Book Chapter]
    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.