Collections in this community

Recent Submissions

  • Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community

    Berger, S.; Rangel Shaw, D.; Berben, T.; Ouboter, H.T.; in ’t Zandt, M.H.; Frank, J.; Reimann, J.; Jetten, M.S.M.; Welte, C.U. (Biofilm, Elsevier BV, 2021-06-15) [Article]
    In recent years, the externalization of electrons as part of respiratory metabolic processes has been discovered in many different bacteria and some archaea. Microbial extracellular electron transfer (EET) plays an important role in many anoxic natural or engineered ecosystems. In this study, an anaerobic methane-converting microbial community was investigated with regard to its potential to perform EET. At this point, it is not well-known if or how EET confers a competitive advantage to certain species in methane-converting communities. EET was investigated in a two-chamber electrochemical system, sparged with methane and with an applied potential of +400 mV versus standard hydrogen electrode. A biofilm developed on the working electrode and stable low-density current was produced, confirming that EET indeed did occur. The appearance and presence of redox centers at −140 to −160 mV and at −230 mV in the biofilm was confirmed by cyclic voltammetry scans. Metagenomic analysis and fluorescence in situ hybridization of the biofilm showed that the anaerobic methanotroph ‘Candidatus Methanoperedens BLZ2’ was a significant member of the biofilm community, but its relative abundance did not increase compared to the inoculum. On the contrary, the relative abundance of other members of the microbial community significantly increased (up to 720-fold, 7.2% of mapped reads), placing these microorganisms among the dominant species in the bioanode community. This group included Zoogloea sp., Dechloromonas sp., two members of the Bacteroidetes phylum, and the spirochete Leptonema sp. Genes encoding proteins putatively involved in EET were identified in Zoogloea sp., Dechloromonas sp. and one member of the Bacteroidetes phylum. We suggest that instead of methane, alternative carbon sources such as acetate were the substrate for EET. Hence, EET in a methane-driven chemolithoautotrophic microbial community seems a complex process in which interactions within the microbial community are driving extracellular electron transfer to the electrode.
  • Influence of static disorder of charge transfer state on voltage loss in organic photovoltaics

    Yan, Jun; Rezasoltani, Elham; Azzouzi, Mohammed; Eisner, Flurin; Nelson, Jenny (Nature Communications, Springer Science and Business Media LLC, 2021-06-15) [Article]
    AbstractSpectroscopic measurements of charge transfer (CT) states provide valuable insight into the voltage losses in organic photovoltaics (OPVs). Correct interpretation of CT-state spectra depends on knowledge of the underlying broadening mechanisms, and the relative importance of molecular vibrational broadening and variations in the CT-state energy (static disorder). Here, we present a physical model, that obeys the principle of detailed balance between photon absorption and emission, of the impact of CT-state static disorder on voltage losses in OPVs. We demonstrate that neglect of CT-state disorder in the analysis of spectra may lead to incorrect estimation of voltage losses in OPV devices. We show, using measurements of polymer:non-fullerene blends of different composition, how our model can be used to infer variations in CT-state energy distribution that result from variations in film microstructure. This work highlights the potential impact of static disorder on the characteristics of disordered organic blend devices.
  • Understanding photodetector nonlinearity in dual-comb interferometry

    Guay, Philippe; Tourigny-Plante, Alex; Michaud-Belleau, Vincent; Hébert, Nicolas Bourbeau; Gouin, Ariane; Genest, Jérôme (arXiv, 2021-06-15) [Preprint]
    The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FTS, causes optical aliasing of the nonlinear spectral artifacts. Measured linear and nonlinear interferograms are presented to validate the model. Absorption lines of H$^{13}$CN are provided to understand the impact of nonlinearity on spectroscopic measurements.
  • Constraining families of dynamic models using geological, geodetic and strong ground motion data: the Mw 6.5, October 30th, 2016, Norcia earthquake, Italy

    Tinti, Elisa; Casarotti, Emanuele; Ulrich, Thomas; Li, D.; Taufiqurrahman, Taufiqurrahman; Gabriel, Alice-Agnes (California Digital Library (CDL), 2021-06-14) [Preprint]
    The 2016 Central Italy earthquake sequence is characterized by remarkable rupture complexity, including highly heterogeneous slip across multiple faults in an extensional tectonic regime. The dense coverage and high quality of geodetic and seismic data allow to image intriguing details of the rupture kinematics of the largest earthquake of the sequence, the Mw 6.5 October 30th, 2016 Norcia earthquake, such as an energetically weak nucleation phase. Several kinematic models suggest multiple fault planes rupturing simultaneously, however, the mechanical viability of such models is not guaranteed.Using 3D dynamic rupture and seismic wave propagation simulations accounting for two fault planes, we constrain 'families' of spontaneous dynamic models informed by a high-resolution kinematic rupture model of the earthquake. These families differ in their parameterization of initial heterogeneous shear stress and strength in the framework of linear slip weakening friction.First, we dynamically validate the kinematically inferred two-fault geometry and rake inferences with models based on only depth-dependent stress and constant friction coefficients. Then, more complex models with spatially heterogeneous dynamic parameters allow us to retrieve slip distributions similar to the target kinematic model and yield good agreement with seismic and geodetic observations. We discuss the consistency of the assumed constant or heterogeneous static and dynamic friction coefficients with mechanical properties of rocks at 3-10 km depth characterizing the Italian Central Apennines and their local geological and lithological implications. We suggest that suites of well-fitting dynamic rupture models belonging to the same family generally exist and can be derived by exploiting the trade-offs between dynamic parameters.Our approach will be applicable to validate the viability of kinematic models and classify spontaneous dynamic rupture scenarios that match seismic and geodetic observations at the same time as geological constraints.
  • Experimental observation of non-Abelian earring nodal links in phononic crystals

    Wang, Mudi; Liu, Shan; Ma, Qiyun; Zhang, Ruo-Yang; Wang, Dongyang; Guo, Qinghua; Yang, Biao; Ke, Manzhu; Liu, Zhengyou; Chan, C. T. (arXiv, 2021-06-12) [Preprint]
    Nodal lines are symmetry-protected one-dimensional band degeneracies in momentum space, which can appear in numerous topological configurations such as nodal rings, chains, links, and knots. Very recently, non-Abelian topological physics has been proposed in space-time inversion (PT) symmetric systems, and attract widespread attention. One of the most special configurations in non-Abelian system is the earring nodal link, composing of a nodal chain linking with an isolated nodal line, is signature of non-Abelian topology and cannot be elucidated using Abelian topological classifications. However, the earring nodal links have not been yet observed in real system. Here we design the phononic crystals with earring nodal links, and verify its non-Abelian topologicial charge in full-wave simulations. Moreover, we experimentally observed two different kinds of earring nodal links by measuring the band structures for two phononic crystals. Specifically, we found that the order of the nodal chain and line can switch after band inversion but their link cannot be severed. Our work provides experimental evidence for phenomena unique to non-Abelian band topology and our simple acoustic system provides a convenient platform for studying non-Abelian charges.
  • Externally driven broadband transmission in strongly disordered materials

    Bachelard, Nicolas; Ropp, Chad; Yang, Sui; Zhang, Xiang (Applied Physics Letters, AIP Publishing, 2021-06-07) [Article]
  • A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications

    Reich, Brian J.; Yang, Shu; Guan, Yawen; Giffin, Andrew B.; Miller, Matthew J.; Rappold, Ana (International Statistical Review, Wiley, 2021-05-31) [Article]
  • Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid

    Huang, Jinzhen; Sheng, Hongyuan; Ross, R. Dominic; Han, Jiecai; Wang, Xianjie; Song, Bo; Jin, Song (Nature Communications, Springer Science and Business Media LLC, 2021-05-24) [Article]
    AbstractDeveloping efficient and stable earth-abundant electrocatalysts for acidic oxygen evolution reaction is the bottleneck for water splitting using proton exchange membrane electrolyzers. Here, we show that nanocrystalline CeO2 in a Co3O4/CeO2 nanocomposite can modify the redox properties of Co3O4 and enhances its intrinsic oxygen evolution reaction activity, and combine electrochemical and structural characterizations including kinetic isotope effect, pH- and temperature-dependence, in situ Raman and ex situ X-ray absorption spectroscopy analyses to understand the origin. The local bonding environment of Co3O4 can be modified after the introduction of nanocrystalline CeO2, which allows the Co$^{III}$ species to be easily oxidized into catalytically active Co$^{IV}$ species, bypassing the potential-determining surface reconstruction process. Co3O4/CeO2 displays a comparable stability to Co3O4 thus breaks the activity/stability tradeoff. This work not only establishes an efficient earth-abundant catalysts for acidic oxygen evolution reaction, but also provides strategies for designing more active catalysts for other reactions.
  • Measurement report: Effects of NO<sub><i>x</i></sub> and seed aerosol on highly oxygenated organic molecules (HOMs) from cyclohexene ozonolysis

    Räty, Meri; Peräkylä, Otso; Riva, Matthieu; Quéléver, Lauriane; Garmash, Olga; Rissanen, Matti; Ehn, Mikael (Atmospheric Chemistry and Physics, Copernicus GmbH, 2021-05-17) [Article]
    Abstract. Cyclohexene (C6H10) is commonly used as a proxy for biogenic monoterpenes, when studying their oxidation mechanisms and secondary organic aerosol (SOA) formation. The ozonolysis of cyclohexene has been shown to be effective at producing highly oxygenated organic molecules (HOMs), a group of molecules known to be important in the formation of SOA. Here, we provide an in-depth look at how the formation and fate of the broad range of observed HOMs changed with perturbations from NOx and seed particles. HOMs were produced in a chamber from cyclohexene ozonolysis and measured with a chemical ionisation mass spectrometer (CIMS) using nitrate (NO3-) as reagent ion. As high-resolution CIMS instruments provide mass spectra with numerous ion signals and a wealth of information that can be hard to manage, we employed a primarily statistical approach for the data analysis. To utilise as many individual HOM signals as possible, each compound was assigned a parameter describing the quality of the observed signal. These parameters were then used as weights or to determine the inclusion of a given signal in further analyses. Under unperturbed ozonolysis conditions, known HOM peaks were observed in the chamber, including C6H8O9 as the largest HOM signal and C12H20O9 as the largest “dimer” product. With the addition of nitric oxide (NO) into the chamber, the spectrum changed considerably, as expected. Dimer product signals decreased overall, but an increase in dimers with nitrate functionalities was seen, as a result of NO3 radical oxidation. The response of monomer signals to NO addition varied, and while nitrate-containing monomers increased, non-nitrate signals either increased or decreased, depending on the individual molecules. The addition of seed aerosol increased the condensation sink, which markedly decreased the signals of all low-volatility compounds. Larger molecules were seen to have a higher affinity for condensation, but a more detailed analysis showed that the uptake was controlled mainly by the number of oxygen atoms in each molecule. Nitrates required higher mass and higher oxygen content to condense at similar rates as the non-nitrate HOMs. We also tested two existing elemental-composition-based parameterisations for their ability to reproduce the condensation observed in our cyclohexene system. Both predicted higher volatilities than observed, most likely due to the number of oxygen atoms enhancing the product uptake more than the models would suggest.
  • SynCells: A 60 × 60 μm2 Electronic Platform with Remote Actuation for Sensing Applications in Constrained Environments

    Hempel, Marek; Schroeder, Vera; Park, Chibeom; Koman, Volodymyr B.; Xue, Mantian; McVay, Elaine; Spector, Sarah; Dubey, Madan; Strano, Michael S; Park, Jiwoong; Kong, Jing; Palacios, Tomas (ACS Nano, American Chemical Society (ACS), 2021-05-07) [Article]
    Autonomous electronic microsystems smaller than the diameter of a human hair (<100 μm) are promising for sensing in confined spaces such as microfluidic channels or the human body. However, they are difficult to implement due to fabrication challenges and limited power budget. Here we present a 60 × 60 μm electronic microsystem platform, or SynCell, that overcomes these issues by leveraging the integration capabilities of two-dimensional material circuits and the low power consumption of passive germanium timers, memory-like chemical sensors, and magnetic pads. In a proof-of-concept experiment, we magnetically positioned SynCells in a microfluidic channel to detect putrescine. After we extracted them from the channel, we successfully read out the timer and sensor signal, the latter of which can be amplified by an onboard transistor circuit. The concepts developed here will be applicable to microsystems targeting a variety of applications from microfluidic sensing to biomedical research.
  • Molecular Targets and Biological Functions of cAMP Signaling in Arabidopsis

    Xu, Ruqiang; Guo, Yanhui; Peng, Song; Liu, Jinrui; Li, Panyu; Jia, Wenjing; Zhao, Junheng (Biomolecules, MDPI AG, 2021-05-03) [Article]
    Cyclic AMP (cAMP) is a pivotal signaling molecule existing in almost all living organisms. However, the mechanism of cAMP signaling in plants remains very poorly understood. Here, we employ the engineered activity of soluble adenylate cyclase to induce cellular cAMP elevation in Arabidopsis thaliana plants and identify 427 cAMP-responsive genes (CRGs) through RNA-seq analysis. Induction of cellular cAMP elevation inhibits seed germination, disturbs phytohormone contents, promotes leaf senescence, impairs ethylene response, and compromises salt stress tolerance and pathogen resistance. A set of 62 transcription factors are among the CRGs, supporting a prominent role of cAMP in transcriptional regulation. The CRGs are significantly overrepresented in the pathways of plant hormone signal transduction, MAPK signaling, and diterpenoid biosynthesis, but they are also implicated in lipid, sugar, K+, nitrate signaling, and beyond. Our results provide a basic framework of cAMP signaling for the community to explore. The regulatory roles of cAMP signaling in plant plasticity are discussed.
  • Atomic-scale ion transistor with ultrahigh diffusivity

    Xue, Yahui; Xia, Yang; Yang, Sui; Alsaid, Yousif; Fong, King Yan; Wang, Yuan; Zhang, Xiang (Science, American Association for the Advancement of Science (AAAS), 2021-04-29) [Article]
    Biological ion channels rapidly and selectively gate ion transport through atomic-scale filters to maintain vital life functions. We report an atomic-scale ion transistor exhibiting ultrafast and highly selective ion transport controlled by electrical gating in graphene channels around 3 angstroms in height, made from a single flake of reduced graphene oxide. The ion diffusion coefficient reaches two orders of magnitude higher than the coefficient in bulk water. Atomic-scale ion transport shows a threshold behavior due to the critical energy barrier for hydrated ion insertion. Our in situ optical measurements suggest that ultrafast ion transport likely originates from highly dense packing of ions and their concerted movement inside the graphene channels.
  • Density of States of OLED Host Materials from Thermally Stimulated Luminescence

    Stankevych, Andrei; Vakhnin, Alexander; Andrienko, Denis; Paterson, Leanne; Genoe, Jan; Fishchuk, Ivan; Bässler, Heinz; Köhler, Anna; Kadashchuk, Andrey (Physical Review Applied, American Physical Society (APS), 2021-04-29) [Article]
    The electronic density of states (DOS) plays a central role in controlling the charge-carrier transport in amorphous organic semiconductors, while its accurate determination is still a challenging task. We apply the low-temperature fractional thermally stimulated luminescence (TSL) technique to determine the DOS of pristine amorphous films of organic light-emitting diode (OLED) host materials. The DOS width is determined for two series of hosts, namely, (i) carbazole-biphenyl derivatives, 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP), 3,3′-di(9 H-carbazol-9-yl)-1,1′-biphenyl (mCBP), and 3′,5-di(9H-carbazol-9-yl)-[1,1′-biphenyl]-3-carbonitrile (mCBP-CN), and (ii) carbazole-phenyl (CP) derivatives, 1,3-bis(N-carbazolyl)benzene (mCP) and 9-[3-(9H-carbazol-9-yl)phenyl]-9H-carbazole-3-carbonitrile (mCP-CN). TSL originates from radiative recombination of charge carriers thermally released from the lower-energy part of the intrinsic DOS that causes charge trapping at very low temperatures. We find that the intrinsic DOS can be approximated by a Gaussian distribution, with a deep exponential tail accompanying this distribution in CBP and mCBP films. The DOS profile broadens with increasing molecular dipole moments, varying from 0 to 6 D, in a similar manner within each series, in line with the dipolar disorder model. The same molecular dipole moment, however, leads to a broader DOS of CP compared with CBP derivatives. Using computer simulations, we attribute the difference between the series to a smaller polarizability of cations in CP derivatives, leading to weaker screening of the electrostatic disorder by induction. These results demonstrate that the low-temperature TSL technique can be used as an efficient experimental tool for probing the DOS in small-molecule OLED materials.
  • Petahertz-scale nonlinear photoconductive sampling in air

    Zimin, Dmitry; Weidman, Matthew; Schötz, Johannes; Kling, Matthias F.; Yakovlev, Vladislav S.; Krausz, Ferenc; Karpowicz, Nicholas (Optica, The Optical Society, 2021-04-26) [Article]
  • Unraveling the Causes of the Instability of Aun(SR)x Nanoclusters on Au(111)

    Carro, Pilar; Azofra Mesa, Luis; Albrecht, Tim; Salvarezza, Roberto C.; Pensa, Evangelina (Chemistry of Materials, American Chemical Society (ACS), 2021-04-23) [Article]
    Properties of small metal nanoclusters rely on the exact arrangement of a few atoms. Minor structural changes can rapidly destabilize them, leading to disintegration. Here, we evaluate the energetic factors accounting for the stabilization and integrity of thiolate-capped gold nanoclusters (AuNCs). We found that the core-cohesive and shell-binding energies regulate the disintegration process on a solid substrate by investigating the different energetic contributions, as shown here in a combined experimental and theoretical study. As the AuNC size increases, the core-cohesive energy and shell stability (imposed by S-Au and hydrocarbon chain interactions) counterbalance the AuNC–substrate interaction and slow down the AuNC disintegration. Thus, the decomposition can not only be understood in terms of desorption and transfer of the capping molecules to the support substrate but conversely, as a whole where ligand and core interactions play a role. Taken together, our experimental and theoretical results serve as guidelines for enhancing the stability of AuNCs on solid-state devices, a key point for reliable nanotechnological applications such as heterogeneous catalysis and sensing.
  • The state of pore fluid pressure and 3D megathrust earthquake dynamics

    Madden, Elizabeth; Ulrich, Thomas; Gabriel, Alice-Agnes (California Digital Library (CDL), 2021-04-14) [Preprint]
    The importance of pore fluid pressure (Pf ) for fault strength, stress state and slip behavior holds promise for explaining spatio-temporal subduction zone megathrust be19 havior, but the coseismic state of Pf and its distribution with depth are poorly constrained. Here, we analyze fault stress states and 3D rupture dynamics of six scenarios based on the 2004 Mw 9.1 Sumatra-Andaman earthquake. We vary Pf from hydrostatic to litho22 static under two di↵erent gradients that result in depth-dependent versus constant ef23 fective normal stress on the seismogenic part of the megathrust. As Pf magnitude in24 creases, fault strength, moment magnitude, cumulative slip, peak slip rate, dynamic stress drop and rupture velocity decrease. When Pf follows the lithostatic gradient, depth-constant e↵ective normal stress results, as theoretically proposed. We find that such a near-lithostatic pore fluid pressure gradient shifts peak slip and peak slip rate up-dip
  • The presence of Superfund sites as a determinant of life expectancy in the United States

    Kiaghadi, Amin; Rifai, Hanadi S.; Dawson, Clint N. (Nature Communications, Springer Nature, 2021-04-13) [Article]
    AbstractSuperfund sites could affect life expectancy (LE) via increasing the likelihood of exposure to toxic chemicals. Here, we assess to what extent such presence could alter the LE independently and in the context of sociodemographic determinants. A nationwide geocoded statistical modeling at the census tract level was undertaken to estimate the magnitude of impact. Results showed a significant difference in LE among census tracts with at least one Superfund site and their neighboring tracts with no sites. The presence of a Superfund site could cause a decrease of −0.186 ± 0.027 years in LE. This adverse effect could be as high as −1.22 years in tracts with Superfund sites and high sociodemographic disadvantage. Specific characteristics of Superfund sites such as being prone to flooding and the absence of a cleanup strategy could amplify the adverse effect. Furthermore, the presence of Superfund sites amplifies the negative influence of sociodemographic factors at lower LEs.
  • Nonlinear valley phonon scattering under the strong coupling regime

    Liu, Xiaoze; Yi, Jun; Yang, Sui; Lin, Erh-Chen; Zhang, Yue-Jiao; Zhang, Peiyao; Li, Jian-Feng; Wang, Yuan; Lee, Yi-Hsien; Tian, Zhong-Qun; Zhang, Xiang (Nature Materials, Springer Nature, 2021-04-12) [Article]
    Research efforts of cavity quantum electrodynamics have focused on the manipulation of matter hybridized with photons under the strong coupling regime1,2,3. This has led to striking discoveries including polariton condensation2 and single-photon nonlinearity3, where the phonon scattering plays a critical role1,2,3,4,5,6,7,8,9. However, resolving the phonon scattering remains challenging for its non-radiative complexity. Here we demonstrate nonlinear phonon scattering in monolayer MoS2 that is strongly coupled to a plasmonic cavity mode. By hybridizing excitons and cavity photons, the phonon scattering is equipped with valley degree of freedom and boosted with superlinear enhancement to a stimulated regime, as revealed by Raman spectroscopy and our theoretical model. The valley polarization is drastically enhanced and sustained throughout the stimulated regime, suggesting a coherent scattering process enabled by the strong coupling. Our findings clarify the feasibility of valley–cavity-based systems for lighting, imaging, optical information processing and manipulating quantum correlations in cavity quantum electrodynamics2,3,10,11,12,13,14,15,16,17.
  • Overlooked Ecological Roles of Influent Wastewater Microflora in Improving Biological Phosphorus Removal in an Anoxic/Aerobic MBR Process

    Xu, Ronghua; Fan, Fuqiang; Lin, Qining; Yuan, Shasha; Meng, Fangang (Environmental Science & Technology, American Chemical Society (ACS), 2021-04-08) [Article]
    The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan’s neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species–species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.
  • Cryogenic Carbon Capture™ (CCC) Status Report

    Baxter, Larry; Hoeger, Christopher; Stitt, Kyler; Burt, Stephanie; Baxter, Andrew (SSRN Electronic Journal, Elsevier BV, 2021-04-07) [Article]
    The Cryogenic Carbon Capture™ (CCC) process separates CO2 from light gases in essentially any continuous process. CCC cools the gases to the frost or desublimation point of CO2 (−100 to −135 °C), separates and pressurizes the solids, and warms all streams to produce a CO2-depleted stream at ambient pressure and a pure (99+%) pressurized liquid CO2 stream typically to about 150 bar, both at ambient temperature. The process also recovers all gas moisture and most gas impurities less volatile than CO2 (NOx, SOx, Hg, PM, UHC, CCC, etc.) in separable streams. CCC nearly eliminates refrigeration energy for sensible temperature changes through heat integration. CCC does require energy to change the CO2 phase from a mixed vapor to a pressurized fluid, which represents the minimum energy required of any process for this separation. CCC uses additional energy for turbomachinery inefficiencies, heat losses, moisture removal and overall process pressure drop. Aside from these real-world energy demands, CCC operates near the minimum energy required to perform this gas separation by minimizing stream recycling. CCC compresses CO2 as a liquid, which is one of several reasons it costs about about half as much and consumes about half as much energy as an amine process when using flue gases with about 15% CO2. The process also has several major additional advantages, including (a) it is a bolt-on retrofit technology that does not need steam or any modification of existing equipment, (b) it recovers water and nearly all pollutants in addition to CO2 from the flue gas, (c) it enables highly efficient and cost effective energy storage at grid scale and on time scales of minutes, (d) it enables NG storage if the energy storage option is used, and (d) it has a small footprint and is minimally disruptive to existing plants, requiring only electrical power and a gas source to operate. Sustainable Energy Solutions (SES) has scaled this technology through several levels, the largest of which captures nominally 1 tonne of CO2/day and is called the skid system. Skid system field tests include utility-scale power plants, cement plants, heating plants, and other utility or industrial sites that burn natural gas, biomass, coal, shredded tires, municipal waste, and combinations of these fuels. These field tests produced 95-99% CO2 capture with CO2 purities of 99+% and initial CO2 contents that range from 4 to 28%. SES currently seeks to scale the system to merchant scale (10-80 tonnes of CO2 per day). In the process of doing so, SES has demonstrated the potential for CCC to contribute to energy storage and direct air capture in innovative and cost-effective ways.

View more