• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorCui, Yi (28)Sargent, Edward H. (10)Cha, Judy J. (8)Hu, Liangbing (7)Kong, Desheng (7)View MoreJournal
    Nano Letters (76)
    KAUST Acknowledged Support UnitKAUST Global Research Partnership (1)KAUST Grant NumberKUS-11-001-12 (11)KUS-C1-018-02 (11)KUS-11-009-21 (9)KUS-C1-015-21 (5)KUS-I1-001-12 (5)View MorePublisher
    American Chemical Society (ACS) (76)
    SubjectTopological insulator (5)Energy storage (4)photovoltaics (4)Bismuth selenide (3)Colloidal quantum dots (3)View MoreTypeArticle (76)Year (Issue Date)2017 (2)2015 (1)2014 (2)2013 (4)2012 (11)View MoreItem AvailabilityMetadata Only (76)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 21-30 of 76

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 50CSV
    • 50RefMan
    • 50EndNote
    • 50BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook; Ruffo, Riccardo; Yang, Yuan; Chan, Candace K.; Peng, Hailin; Huggins, Robert A.; Cui, Yi (Nano Letters, American Chemical Society (ACS), 2008-11-12) [Article]
    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.
    Thumbnail

    Solution-Processed Graphene/MnO 2 Nanostructured Textiles for High-Performance Electrochemical Capacitors

    Yu, Guihua; Hu, Liangbing; Vosgueritchian, Michael; Wang, Huiliang; Xie, Xing; McDonough, James R.; Cui, Xu; Cui, Yi; Bao, Zhenan (Nano Letters, American Chemical Society (ACS), 2011-07-13) [Article]
    Large scale energy storage system with low cost, high power, and long cycle life is crucial for addressing the energy problem when connected with renewable energy production. To realize grid-scale applications of the energy storage devices, there remain several key issues including the development of low-cost, high-performance materials that are environmentally friendly and compatible with low-temperature and large-scale processing. In this report, we demonstrate that solution-exfoliated graphene nanosheets (∼5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials. With further controlled electrodeposition of pseudocapacitive MnO2 nanomaterials, the hybrid graphene/MnO2-based textile yields high-capacitance performance with specific capacitance up to 315 F/g achieved. Moreover, we have successfully fabricated asymmetric electrochemical capacitors with graphene/MnO 2-textile as the positive electrode and single-walled carbon nanotubes (SWNTs)-textile as the negative electrode in an aqueous Na 2SO4 electrolyte solution. These devices exhibit promising characteristics with a maximum power density of 110 kW/kg, an energy density of 12.5 Wh/kg, and excellent cycling performance of ∼95% capacitance retention over 5000 cycles. Such low-cost, high-performance energy textiles based on solution-processed graphene/MnO2 hierarchical nanostructures offer great promise in large-scale energy storage device applications. © 2011 American Chemical Society.
    Thumbnail

    Solar Cells Using Quantum Funnels

    Kramer, Illan J.; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H. (Nano Letters, American Chemical Society (ACS), 2011-09-14) [Article]
    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.
    Thumbnail

    Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn 2 O 4

    Yang, Yuan; Xie, Chong; Ruffo, Riccardo; Peng, Hailin; Kim, Do Kyung; Cui, Yi (Nano Letters, American Chemical Society (ACS), 2009-12-09) [Article]
    This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials as an example. LiMn2O4 and Al-doped LiMn2O4 nanorods were synthesized by a two-step method that combines hydrothermal synthesis of β-MnO2 nanorods and a solid state reaction to convert them to LiMn2O4 nanorods. λ-MnO2 nanorods were also prepared by acid treatment of LiMn2O4 nanorods. The effect of electrolyte etching on these LiMn2O 4-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual singlecrystalline particle. Experiments show that Al dopants reduce the dissolution of Mn3+ ions significantly and make the LiAl 0.1Mn1.9O4 nanorods much more stable than LiMn2O4 against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn 2O4 in our Li-ion battery tests: LiAl0.1Mn 1.9O4 nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 °C, whereas LiMn 2O4 shows worse retention of 91% at room temperature, and 69% at 60 °C. Moreover, temperature-dependent I - V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn2O4 nanorod samples, suggesting good battery performance at low temperature. © 2009 American Chemical Society.
    Thumbnail

    Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M. (Nano Letters, American Chemical Society (ACS), 2012-07-06) [Article]
    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.
    Thumbnail

    Self-Cleaning Antireflective Optical Coatings

    Guldin, Stefan; Kohn, Peter; Stefik, Morgan; Song, Juho; Divitini, Giorgio; Ecarla, Fanny; Ducati, Caterina; Wiesner, Ulrich; Steiner, Ullrich (Nano Letters, American Chemical Society (ACS), 2013-10-18) [Article]
    Low-cost antireflection coatings (ARCs) on large optical surfaces are an ingredient-technology for high-performance solar cells. While nanoporous thin films that meet the zero-reflectance conditions on transparent substrates can be cheaply manufactured, their suitability for outdoor applications is limited by the lack of robustness and cleanability. Here, we present a simple method for the manufacture of robust self-cleaning ARCs. Our strategy relies on the self-assembly of a block-copolymer in combination with silica-based sol-gel chemistry and preformed TiO2 nanocrystals. The spontaneous dense packing of copolymer micelles followed by a condensation reaction results in an inverse opal-type silica morphology that is loaded with TiO2 photocatalytic hot-spots. The very low volume fraction of the inorganic network allows the optimization of the antireflecting properties of the porous ARC despite the high refractive index of the embedded photocatalytic TiO2 nanocrystals. The resulting ARCs combine high optical and self-cleaning performance and can be deposited onto flexible plastic substrates. © 2013 American Chemical Society.
    Thumbnail

    Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    Nootz, Gero; Padilha, Lazaro A.; Olszak, Peter D.; Webster, Scott; Hagan, David J.; Van Stryland, Eric W.; Levina, Larissa; Sukhovatkin, Vlad; Brzozowski, Lukasz; Sargent, Edward H. (Nano Letters, American Chemical Society (ACS), 2010-09-08) [Article]
    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.
    Thumbnail

    Quantum Junction Solar Cells

    Tang, Jiang; Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Wang, Xihua; Furukawa, Melissa; Levina, Larissa; Sargent, Edward H. (Nano Letters, American Chemical Society (ACS), 2012-08-16) [Article]
    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.
    Thumbnail

    Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    Li, Zhou; Song, Jinhui; Mantini, Giulia; Lu, Ming-Yen; Fang, Hao; Falconi, Christian; Chen, Lih-Juann; Wang, Zhong Lin (Nano Letters, American Chemical Society (ACS), 2009-10-14) [Article]
    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.
    Thumbnail

    Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    Kaempgen, Martti; Chan, Candace K.; Ma, J.; Cui, Yi; Gruner, George (Nano Letters, American Chemical Society (ACS), 2009-05-13) [Article]
    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • . . .
    • 8
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.