• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Ganesan, Venkat (3)
    Aryal, Dipak (1)Chen, Yulong (1)Jin, Yangfu (1)Liu, Jun (1)View MoreJournalMacromolecules (1)Soft Matter (1)The Journal of Physical Chemistry B (1)KAUST Grant NumberOSR-2016-CRG5-2993-1 (3)PublisherAmerican Chemical Society (ACS) (2)Royal Society of Chemistry (RSC) (1)TypeArticle (3)Year (Issue Date)
    2018 (3)
    Item AvailabilityMetadata Only (3)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-3 of 3

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 3CSV
    • 3RefMan
    • 3EndNote
    • 3BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Diffusivity of Mono- and Divalent Salts and Water in Polyelectrolyte Desalination Membranes

    Aryal, Dipak; Ganesan, Venkat (The Journal of Physical Chemistry B, American Chemical Society (ACS), 2018-08-14) [Article]
    The dynamics of ions and solvent molecules in polyelectrolyte desalination membranes is key to water purification technologies in which selective transport of the different components is desired. Recent experimental and our computational results have shown that nontrivial mechanisms underlie the transport properties of salt ions and water in charged polymer membranes. Explicitly, in polymer electrolytes, we found a reversal in the salt concentration dependence of the mobilities of Na+, Cl– salt ions and water molecules when compared with aqueous solutions. Motivated by such results, in this study, we have used atomistic molecular dynamics simulations to probe whether the mechanisms deduced in our earlier work apply to other salt systems and to mixtures of salts. Specifically, we report results for the ion diffusivities in aqueous KCl, MgCl2, and a 1:1 mixture of NaCl and MgCl2 salt solutions at different concentrations (ranging from 0.06 to 1 M) and investigate, at the molecular level, the mechanisms underlying the behaviors of salt and water transport properties. Our results show that diffusion of salt ions and water in charged polymer membranes are in general influenced by their association with polymer charge groups and ion pairing effects. Divalent ions are more strongly coupled with the polymeric ionic groups than monovalent salt ions and exhibit diffusivity trends that are distinct relative to monovalent salts. Further, we demonstrate that the mobilities of water molecules are influenced by coordination of water with polymer charge groups and their ion pairing tendencies and also exhibit distinct trends in monovalent and divalent salt solutions.
    Thumbnail

    Design of End-to-End Assembly of Side-Grafted Nanorods in a Homopolymer Matrix

    Chen, Yulong; Xu, Qian; Jin, Yangfu; Qian, Xin; Liu, Li; Liu, Jun; Ganesan, Venkat (Macromolecules, American Chemical Society (ACS), 2018-05-23) [Article]
    Coarse-grained molecular dynamics simulations were carried out to identify the conditions under which the nanorods (NRs) side-grafted with polymer chains can assemble in end-to-end configurations in a homopolymer matrix, a structure of significant importance for optimal property characteristics. Our results demonstrate that by adjusting the grafting density and the grafted chain length, three different NR morphologies can be obtained, viz., side-by-side aggregation, end-to-end alignment and homogeneous dispersion. To understand the underlying mechanism, the chain characteristics around the NRs were systematically investigated. We find that the transition of NR morphologies from side-by-side aggregation to others is correlated to the mushroom-to-brush transition of the grafted chain configurations. At high grafting densities corresponding to the brush regime, the entropic steric repulsions between the polymer brushes prevent the NRs from approaching in side-by-side configurations. Instead, end-to-end assembly and homogeneous dispersion are observed. Within such regimes, we observe that the splaying of the grafted polymer chains at the edges of the NRs plays a critical role in determining the occurrence of end-to-end assembly. When the extent of splaying cannot overcome the van der Waals and depletion attractions between the NR ends, which occurs at relatively short graft lengths, the end-to-end assembly is preferred. We find that this manner of self-assembly will be further promoted by increasing the NR loading but is retarded by increasing the NR aspect ratio. In general, our study identifies conditions to enable the end-to-end assembly of NRs in a homopolymer matrix, enabling significant practical applications.
    Thumbnail

    Influence of dielectric inhomogeneities on the structure of charged nanoparticles in neutral polymer solutions

    Samanta, Rituparna; Ganesan, Venkat (Soft Matter, Royal Society of Chemistry (RSC), 2018) [Article]
    We study the structural characteristics of a system of charged nanoparticles in a neutral polymer solution while accounting for the differences in the dielectric constant between the particles, polymer and the solvent. We use a hybrid computational methodology involving a combination of single chain in mean-field simulations and the solution of the Poisson's equation for the electrostatic field. We quantify the resulting particle structural features in terms of radial distribution function among particles as a function of the dielectric contrast, particle charge, particle volume fraction and polymer concentration. In the absence of polymers, charged macroions experience increased repulsion with a lowering of the ratio of particle to solvent dielectric constant. The influence of the dielectric contrast between the particle and the solvent however diminishes with an increase in the particle volume fraction and/or its charge. In the presence of neutral polymers, similar effects manifest, but with the additional physics arising from the fact that the polymer-induced interactions are influenced by the dielectric contrast of the particle and solvent.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.