• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    Author
    Debnath, Ratan (2)
    Kramer, Illan J. (2)
    Sargent, Edward H. (2)
    Zhitomirsky, David (2)Barkhouse, D. Aaron R. (1)View MoreJournal
    Advanced Materials (2)
    KAUST Grant NumberKUS-11-009-21 (1)KUS-I1-009-21 (1)PublisherWiley (2)Subject
    solar cells (2)
    bulk heterojunction (1)bulk heterojunctions (1)colloidal quantum dots (1)depleted heterojunctions (1)View MoreTypeArticle (2)Year (Issue Date)2012 (1)2011 (1)Item Availability
    Metadata Only (2)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Ordered Nanopillar Structured Electrodes for Depleted Bulk Heterojunction Colloidal Quantum Dot Solar Cells

    Kramer, Illan J.; Zhitomirsky, David; Bass, John D.; Rice, Philip M.; Topuria, Teya; Krupp, Leslie; Thon, Susanna M.; Ip, Alexander H.; Debnath, Ratan; Kim, Ho-Cheol; Sargent, Edward H. (Advanced Materials, Wiley, 2012-03-30) [Article]
    A bulk heterojunction of ordered titania nanopillars and PbS colloidal quantum dots is developed. By using a pre-patterned template, an ordered titania nanopillar matrix with nearest neighbours 275 nm apart and height of 300 nm is fabricated and subsequently filled in with PbS colloidal quantum dots to form an ordered depleted bulk heterojunction exhibiting power conversion efficiency of 5.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Thumbnail

    Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    Barkhouse, D. Aaron R.; Debnath, Ratan; Kramer, Illan J.; Zhitomirsky, David; Pattantyus-Abraham, Andras G.; Levina, Larissa; Etgar, Lioz; Grätzel, Michael; Sargent, Edward H. (Advanced Materials, Wiley, 2011-05-26) [Article]
    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.