• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorDebnath, Ratan (1)
    Kramer, Illan J. (1)
    Levina, Larissa (1)
    Sargent, Edward H. (1)
    Zhitomirsky, David (1)JournalNano Letters (1)KAUST Grant Number
    KUS-11-009-21 (1)
    Publisher
    American Chemical Society (ACS) (1)
    Subjectbandgap engineering (1)colloidal quantum dot (1)
    Depleted heterojunction (1)
    photovoltaics (1)quantum funnel (1)View MoreTypeArticle (1)Year (Issue Date)2011 (1)Item Availability
    Metadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Solar Cells Using Quantum Funnels

    Kramer, Illan J.; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H. (Nano Letters, American Chemical Society (ACS), 2011-09-14) [Article]
    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.