• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorAmato, Nancy M. (2)
    Denny, Jory (2)
    Thomas, Shawna (2)
    Greco, Evan (1)Lindsey, Aaron (1)View MoreJournal
    2014 IEEE International Conference on Robotics and Automation (ICRA) (2)
    KAUST Grant NumberKUS-C1-016-04 (2)Publisher
    Institute of Electrical and Electronics Engineers (IEEE) (2)
    Type
    Conference Paper (2)
    Year (Issue Date)2014 (2)Item Availability
    Metadata Only (2)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-2 of 2

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 2CSV
    • 2RefMan
    • 2EndNote
    • 2BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    MARRT: Medial Axis biased rapidly-exploring random trees

    Denny, Jory; Greco, Evan; Thomas, Shawna; Amato, Nancy M. (2014 IEEE International Conference on Robotics and Automation (ICRA), Institute of Electrical and Electronics Engineers (IEEE), 2014-05) [Conference Paper]
    © 2014 IEEE. Motion planning is a difficult and widely studied problem in robotics. Current research aims not only to find feasible paths, but to ensure paths have certain properties, e.g., shortest or safest paths. This is difficult for current state-of-the-art sampling-based techniques as they typically focus on simply finding any path. Despite this difficulty, sampling-based techniques have shown great success in planning for a wide range of applications. Among such planners, Rapidly-Exploring Random Trees (RRTs) search the planning space by biasing exploration toward unexplored regions. This paper introduces a novel RRT variant, Medial Axis RRT (MARRT), which biases tree exploration to the medial axis of free space by pushing all configurations from expansion steps towards the medial axis. We prove that this biasing increases the tree's clearance from obstacles. Improving obstacle clearance is useful where path safety is important, e.g., path planning for robots performing tasks in close proximity to the elderly. Finally, we experimentally analyze MARRT, emphasizing its ability to effectively map difficult passages while increasing obstacle clearance, and compare it to contemporary RRT techniques.
    Thumbnail

    UMAPRM: Uniformly sampling the medial axis

    Yeh, Hsin-Yi Cindy; Denny, Jory; Lindsey, Aaron; Thomas, Shawna; Amato, Nancy M. (2014 IEEE International Conference on Robotics and Automation (ICRA), Institute of Electrical and Electronics Engineers (IEEE), 2014-05) [Conference Paper]
    © 2014 IEEE. Maintaining clearance, or distance from obstacles, is a vital component of successful motion planning algorithms. Maintaining high clearance often creates safer paths for robots. Contemporary sampling-based planning algorithms That utilize The medial axis, or The set of all points equidistant To Two or more obstacles, produce higher clearance paths. However, They are biased heavily Toward certain portions of The medial axis, sometimes ignoring parts critical To planning, e.g., specific Types of narrow passages. We introduce Uniform Medial Axis Probabilistic RoadMap (UMAPRM), a novel planning variant That generates samples uniformly on The medial axis of The free portion of Cspace. We Theoretically analyze The distribution generated by UMAPRM and show its uniformity. Our results show That UMAPRM's distribution of samples along The medial axis is not only uniform but also preferable To other medial axis samplers in certain planning problems. We demonstrate That UMAPRM has negligible computational overhead over other sampling Techniques and can solve problems The others could not, e.g., a bug Trap. Finally, we demonstrate UMAPRM successfully generates higher clearance paths in The examples.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.