• Login
    Search 
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    •   Home
    • Office of Sponsored Research (OSR)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Filter by Category

    AuthorEfendiev, Yalchin R. (1)
    Jiang, Lijian (1)
    Mishev, IIya (1)JournalComputational Geosciences (1)KAUST Grant NumberKUS-CI-016-04 (1)Publisher
    Springer Nature (1)
    Subject
    Homogenization (1)
    Mixed multiscale finite elements (1)Porous media (1)
    Two-phase flows (1)
    Upscaling (1)View MoreType
    Article (1)
    Year (Issue Date)2009 (1)Item AvailabilityMetadata Only (1)

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CommunityIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Submit Date Asc
    • Submit Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Mixed multiscale finite element methods using approximate global information based on partial upscaling

    Jiang, Lijian; Efendiev, Yalchin R.; Mishev, IIya (Computational Geosciences, Springer Nature, 2009-10-02) [Article]
    The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308-317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods. © 2009 Springer Science+Business Media B.V.
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.