• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Magnetoelectric Nanocomposites for Flexible Electronics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Alnassar Final Thesis _ 20150806.pdf
    Size:
    6.668Mb
    Format:
    PDF
    Description:
    Al-Nassar Final Thesis
    Download
    Type
    Dissertation
    Authors
    Al-Nassar, Mohammed Y. cc
    Advisors
    Kosel, Jürgen cc
    Committee members
    Alshareef, Husam N. cc
    Foulds, Ian G.
    Gianchandani, Yogesh
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Date
    2015-09
    Embargo End Date
    2016-10-01
    Permanent link to this record
    http://hdl.handle.net/10754/578906
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation became available to the public after the expiration of the embargo on 2016-10-01.
    Abstract
    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well as the coercive field of the ferroelectric phase are slightly affected. Third, effects of NW alignment on the magnetic properties of nanocomposites are discussed. Nanocomposites with aligned NWs showed anisotropic magnetic properties while the ones without showed isotropic properties. Forth and last, the effects of NWs loading, alignment and material on the magnetoelectric properties of the nanocomposites are analyzed. Low NW concentrations are found to promote the electroactive phase of the nanocomposite, whereas high concentrations lower it. Nanocomposites with aligned NWs showed an anisotropic magnetoelectric effect. Higher magnetostrictive NWs exhibited a higher magnetoelectric coupling, demonstrating the advantage of galfenol-based nanocomposites, which are reported in this thesis for the first time.
    Citation
    Al-Nassar, M. Y. (2015). Magnetoelectric Nanocomposites for Flexible Electronics. KAUST Research Repository. https://doi.org/10.25781/KAUST-M2T9Y
    DOI
    10.25781/KAUST-M2T9Y
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-M2T9Y
    Scopus Count
    Collections
    Dissertations; Electrical Engineering Program; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.