• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Unified performance analysis of hybrid-ARQ with incremental redundancy over free-space optical channels

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Zedini, Emna cc
    Chelli, Ali
    Alouini, Mohamed-Slim cc
    KAUST Department
    Communication Theory Lab
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2014-09
    Permanent link to this record
    http://hdl.handle.net/10754/577144
    
    Metadata
    Show full item record
    Abstract
    In this paper, we carry out a unified performance analysis of hybrid automatic repeat request (HARQ) with incremental redundancy (IR) from an information theoretic perspective over a point-to-point free-space optical (FSO) system. First, we introduce a novel unified expression for the distribution of a single FSO link modeled by the Gamma fading that accounts for pointing errors subject to both types of detection techniques at the receiver side (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). Then, we provide analytical expressions for the outage probability, the average number of transmissions, and the average transmission rate for HARQ with IR, assuming a maximum number of rounds for the HARQ protocol. In our study, the communication rate per HARQ round is constant. Our analysis demonstrates the importance of HARQ in improving the performance and reliability of FSO communication systems. All the given results are verified via computer-based Monte-Carlo simulations.
    Publisher
    Institute of Electrical and Electronics Engineers (IEEE)
    Journal
    2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC)
    DOI
    10.1109/PIMRC.2014.7136269
    ae974a485f413a2113503eed53cd6c53
    10.1109/PIMRC.2014.7136269
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Electrical Engineering Program; Communication Theory Lab; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.