Inherently stochastic spiking neurons for probabilistic neural computation
Type
Conference PaperKAUST Department
Computer Science ProgramComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
Electrical Engineering Program
Sensors Lab
Date
2015-04Permanent link to this record
http://hdl.handle.net/10754/577114
Metadata
Show full item recordAbstract
Neuromorphic engineering aims to design hardware that efficiently mimics neural circuitry and provides the means for emulating and studying neural systems. In this paper, we propose a new memristor-based neuron circuit that uniquely complements the scope of neuron implementations and follows the stochastic spike response model (SRM), which plays a cornerstone role in spike-based probabilistic algorithms. We demonstrate that the switching of the memristor is akin to the stochastic firing of the SRM. Our analysis and simulations show that the proposed neuron circuit satisfies a neural computability condition that enables probabilistic neural sampling and spike-based Bayesian learning and inference. Our findings constitute an important step towards memristive, scalable and efficient stochastic neuromorphic platforms. © 2015 IEEE.Citation
Al-Shedivat, M., Naous, R., Neftci, E., Cauwenberghs, G., & Salama, K. N. (2015). Inherently stochastic spiking neurons for probabilistic neural computation. 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER). doi:10.1109/ner.2015.7146633Conference/Event name
7th International IEEE/EMBS Conference on Neural Engineering, NER 2015ae974a485f413a2113503eed53cd6c53
10.1109/NER.2015.7146633