• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    AC electric field induced vortex in laminar coflow diffusion flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Xiong, Yuan cc
    Cha, Min Suk cc
    Chung, Suk Ho cc
    KAUST Department
    Clean Combustion Research Center
    Combustion and Laser Diagnostics Laboratory
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2014-09-22
    Online Publication Date
    2014-09-22
    Print Publication Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/575890
    
    Metadata
    Show full item record
    Abstract
    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
    Sponsors
    Research reported in this publication was supported by KAUST-AEA project.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    Conference/Event name
    30th International Symposium on Combustion
    DOI
    10.1016/j.proci.2014.08.027
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2014.08.027
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.