Type
Book ChapterAuthors
Buonomenna, M. G.Choi, Seung Hak
KAUST Department
Advanced Membranes and Porous Materials Research CenterDate
2012-11-14Online Publication Date
2012-11-14Print Publication Date
2012-06-23Permanent link to this record
http://hdl.handle.net/10754/575849
Metadata
Show full item recordAbstract
Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.Citation
Giovanna Buonomenna, M., & Choi, S.-H. (2012). Recent Advances on Polymeric Membranes for Membrane Reactors. Advanced Materials for Membrane Preparation, 248–285. doi:10.2174/978160805308711201010248Publisher
Bentham Science Publishers Ltd.ISBN
9781608055050ae974a485f413a2113503eed53cd6c53
10.2174/978160805308711201010248
Scopus Count
Related items
Showing items related by title, author, creator and subject.
-
Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane foulingWerner, Craig M.; Katuri, Krishna; Rao, Hari Ananda; Chen, Wei; Lai, Zhiping; Logan, Bruce E.; Amy, Gary L.; Saikaly, Pascal (Environmental Science & Technology, American Chemical Society (ACS), 2016-01-06) [Article]Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.
-
Synthesis a new Membrane from the Nano-Cellulose Membrane and Nano-Ceramic Membrane in Bioreactor System into the Microbial Fuel Cell for Sewage Treatment by AlgaeAlsahli, Rawan (2019-01-27) [Poster]The problems of water shortage in the Middle East and North Africa (MENA) regions are well documented. The population, having more than doubled in the past 30 years to about 280 million, could double again in the next 30 years. As the population has grown against a background of finite freshwater resources, so the water available to individuals has fallen dramatically. A complete study examining the influence of through biological system will be used. Biological systems with algae within the microbial cell will be used in sewage purification in a sustainable and environmentally friendly manner. Biological wastewater treatment harnesses the action of bacteria and other microorganisms to clean water. It is used worldwide because it’s effective and more economical than many mechanical or chemical processes. We will use algae biomass to treat water from biological contaminants. To remove phosphorus, nitrogen, and ammonia. We will use a nano-cellulose membrane and nano ceramic membrane to make them as one membrane to filter water from chemical contaminants such as heavy metals and other contaminants. We will use algae biomass to treat water from biological contaminants. To remove phosphorus, nitrogen, and ammonia. We will use a nano-cellulose membrane and nano ceramic membrane to make them as one membrane to filter water from chemical contaminants such as heavy metals and other contaminants. Cellulose nanomaterials membrane remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functional ability, and sustainability Ceramic nanomaterials membranes with many advantages, such as superior mechanical strength, higher chemical stability, and better acid and alkali resistant ability, have a promising prospect in water treatment fields. Hence, it is highly expected that ceramic MBR would be more sustainable for e-MBR assemble and application They will be used to synthesize a new membrane with better features and faster filtration and resistance Algae can be used in wastewater treatment for a range of purposes, including: 1. Reduction of BOD. 2. Removal of N and/or P. 3. Inhibition of coliforms. 4. Removal of heavy metals. This algae biomass could be used for: 1.methane production. 2.composting. 3.production of liquid fuels (pseudo-vegetable fuels). 4. as animal feed or in aquaculture. 5. production of fine chemicals. Heavy metal ions could be eliminated by several techniques as follows: • Chemical precipitation. • Reverse osmosis. • Electrochemical treatment techniques. • Ion exchange. • Membrane filtration. • Adsorption due to its low cost-effective, high efficiency, and simple to operate for removing trace levels of heavy metal ions. • Adsorption technology is regarded as the most promising one to remove heavy metal ions from effluents among these techniques mentioned above. Several types of materials to adsorb metal ions from aqueous solutions, such as activated: • Carbons. • Clay minerals. • Chelating materials. • Chitosan/natural zeolites. Ceramic Nanomaterials Membrane. Microbial Fuel Cells (MFCs) Cellulose Nanomaterials Membrane
-
Micro-and/or nano-scale patterned porous membranes, methods of making membranes, and methods of using membranesWang, Xianbin; Chen, Wei; Wang, Zhihong; Zhang, Xixiang; Yue, Weisheng; Lai, Zhiping (2015-01-22) [Patent]Embodiments of the present disclosure provide for materials that include a pre-designed patterned, porous membrane (e.g., micro- and/or nano-scale patterned), structures or devices that include a pre-designed patterned, porous membrane, methods of making pre-designed patterned, porous membranes, methods of separation, and the like.