A discontinuous Galerkin method for P-wave modeling in tilted TI media
Type
Conference PaperKAUST Department
Earth Fluid Modeling and Prediction GroupEarth Science and Engineering Program
Environmental Science and Engineering Program
Physical Science and Engineering (PSE) Division
Seismic Wave Analysis Group
Date
2014Permanent link to this record
http://hdl.handle.net/10754/575766
Metadata
Show full item recordAbstract
The acoustic approximation is an efficient alternative to the equations of elastodynamics for modeling Pwave propagation in weakly anisotropic media. We present a stable discontinuous Galerkin (DG) method for solving the acoustic approximation in tilted TI media (acoustic TI approximation). The acoustic TI approximation is considered as a modification of the equations of elastodynamics from which a modified energy is derived. The modified energy is obtained by eliminating the shear stress in the coordinates determined by the tilt angle and finding an energy for the remaining unknowns. This construction is valid if the medium is not elliptically anisotropic, a requirement frequently found in the literature. In the fully discrete setting, the modified energy is also conserved in time the presence of sharp contrasts in material parameters. By construction, the scheme can be coupled to the (fully) acoustic wave equation in the same way as the equations of elastodynamics. Hence, the number of unknowns can be reduced in acoustic regions. Our numerical examples confirm the conservation of energy in the discrete setting and the stability of the scheme.Publisher
EAGE PublicationsConference/Event name
76th European Association of Geoscientists and Engineers Conference and Exhibition 2014: Experience the Energy - Incorporating SPE EUROPEC 2014ISBN
9781632666949ae974a485f413a2113503eed53cd6c53
10.3997/2214-4609.20141529