Show simple item record

dc.contributor.authorBouida, Zied
dc.contributor.authorQaraqe, Khalid A.
dc.contributor.authorAbdallah, Mohamed M.
dc.contributor.authorAlouini, Mohamed-Slim
dc.date.accessioned2015-08-24T08:35:56Z
dc.date.available2015-08-24T08:35:56Z
dc.date.issued2012-12
dc.identifier.issn00906778
dc.identifier.doi10.1109/TCOMM.2012.081512.110520
dc.identifier.urihttp://hdl.handle.net/10754/575690
dc.description.abstractUnder the scenario of an underlay cognitive radio network, we propose in this paper two adaptive schemes using switched transmit diversity and adaptive modulation in order to increase the spectral efficiency of the secondary link and maintain a desired performance for the primary link. The proposed switching efficient scheme (SES) and bandwidth efficient scheme (BES) use the scan and wait combining technique (SWC) where a transmission occurs only when a branch with an acceptable performance is found, otherwise data is buffered. In these schemes, the modulation constellation size and the used transmit branch are determined to minimize the average number of switched branches and to achieve the highest spectral efficiency given the fading channel conditions, the required error rate performance, and a peak interference constraint to the primary receiver (PR). For delay-sensitive applications, we also propose two variations of the SES and BES schemes using power control (SES-PC and BES-PC) where the secondary transmitter (ST) starts sending data using a nominal power level which is selected in order to minimize the average delay introduced by the SWC technique. We demonstrate through numerical examples that the BES scheme increases the capacity of the secondary link when compared to the SES scheme. This spectral efficiency improvement comes at the expense of an increased average number of switched branches and thus an increased average delay. We also show that the SES-PC and the BES-PC schemes minimize the average delay while satisfying the same spectral efficiency as the SES and BES schemes, respectively. © 2012 IEEE.
dc.description.sponsorshipThis work was made possible by NPRP grant No. NPRP 08-152-2-043 and NPRP grant No. NPRP 08-101-2-025 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectAdaptive modulation
dc.subjectand switched diversity
dc.subjectperformance analysis
dc.subjectpower control
dc.subjectspectrum sharing
dc.titlePerformance analysis of joint multi-branch switched diversity and adaptive modulation schemes for spectrum sharing systems
dc.typeArticle
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentCommunication Theory Lab
dc.identifier.journalIEEE Transactions on Communications
dc.contributor.institutionECE Department, Concordia University, Montreal, Canada
dc.contributor.institutionDepartment of ECE, Texas AandM University at Qatar, Doha, Qatar
kaust.personAlouini, Mohamed-Slim


This item appears in the following Collection(s)

Show simple item record