• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Schroeder, Bob C. cc
    Kirkus, Mindaugas cc
    Nielsen, Christian B.
    Ashraf, Raja Shahid
    McCulloch, Iain cc
    KAUST Department
    Chemical Science Program
    KAUST Solar Center (KSC)
    Physical Science and Engineering (PSE) Division
    Date
    2015-08-13
    Online Publication Date
    2015-08-13
    Print Publication Date
    2015-08-25
    Permanent link to this record
    http://hdl.handle.net/10754/575659
    
    Metadata
    Show full item record
    Abstract
    We report the synthesis of a novel pentacyclic donor moiety, dithienosilolothiophene, and its incorporation into low bandgap semiconducting polymers. The unique geometry of this new donor allowed attaching four solubilizing side chains on the same side of the fused ring system, thus ensuring sufficient solubility when incorporated into conjugated polymers while simultaneously reducing the steric hindrance between adjacent polymer chains. The optoelectronic properties of three new polymers comprising the novel pentacyclic donor were investigated and compared to structurally similar thieno[3,2-b]thienobis(silolothiophene) polymers. Organic solar cells were fabricated in order to evaluate the new materials’ potential as donor polymers in bulk heterojunction solar cells and gain further insight into how the single-sided side-chain arrangement affects the active layer blend morphology.
    Publisher
    American Chemical Society (ACS)
    Journal
    Macromolecules
    DOI
    10.1021/acs.macromol.5b00941
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.macromol.5b00941
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Science Program; KAUST Solar Center (KSC)

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.