• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Manufacturing of Thermoelectric Nanomaterials (Bi 0.4 Sb 1.6 Te 3 /Bi 1.75 Te 3.25 ) and Integration into Window Glasses for Thermoelectricity Generation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Inayat, Salman Bin
    Rader, Kelly
    Hussain, Muhammad Mustafa cc
    KAUST Department
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    Electrical Engineering Program
    Electrical Engineering Program
    Integrated Nanotechnology Lab
    Date
    2014-02-26
    Online Publication Date
    2014-02-26
    Print Publication Date
    2014-03
    Permanent link to this record
    http://hdl.handle.net/10754/575594
    
    Metadata
    Show full item record
    Abstract
    We embed thermoelectric nanomaterials into window glass to generate thermoelectricity from the temperature gradient between the solar-heated outdoors and the relatively cold indoor temperature. Until now thermoelectric generators have been built on a single side of a substrate, therefore requiring the two temperature environments to exist on the same side of the substrate. For this application, substantially thick window glass (>5 mm) serves as the interface for which the hot side is on the exterior side of the window and the cold side on the interior side. We demonstrate thermopiles made of nanomaterials integrated through the glass. With meticulous engineering, 300 W of power can be generated from a 9 m(2) window for a temperature gradient of 20 degrees C, which is typical in hot climates, such as the desert areas in the Middle East and African Sahara. A thermoelectric window can be a supplementary power source for waste heat recovery in green building technology.
    Citation
    Inayat, S. B., Rader, K. R., & Hussain, M. M. (2014). Manufacturing of Thermoelectric Nanomaterials (Bi0.4Sb1.6Te3/Bi1.75Te3.25) and Integration into Window Glasses for Thermoelectricity Generation. Energy Technology, 2(3), 292–299. doi:10.1002/ente.201300166
    Sponsors
    The authors acknowledge the financial support of Baseline Research Funding from King Abdullah University of Science and Technology, and the GRP Collaborative Fellow Award (to SBI) (GRP-CF-2011-01-S). MMH conceived the idea and directed the study. SBI performed the study. S. B. I. and M. M. H. analyzed the data.
    Publisher
    Wiley
    Journal
    Energy Technology
    DOI
    10.1002/ente.201300166
    ae974a485f413a2113503eed53cd6c53
    10.1002/ente.201300166
    Scopus Count
    Collections
    Articles; Electrical and Computer Engineering Program; Integrated Nanotechnology Lab; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.