• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Bisetti, Fabrizio cc
    Sarathy, Mani cc
    Toma, Milan
    Chung, Suk Ho cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Laser Diagnostics Laboratory
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Reactive Flow Modeling Laboratory (RFML)
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/566169
    
    Metadata
    Show full item record
    Abstract
    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.
    Sponsors
    The research reported in this publication was supported by Saudi Aramco and by King Abdullah University of Science and Technology (KAUST).
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2014.06.077
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2014.06.077
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.