• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Li, Sijie
    Sarathy, Mani cc
    Davidson, David Frank
    Hanson, Ronald Kenneth
    Westbrook, Charles K.
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Physical Science and Engineering (PSE) Division
    Date
    2015-05
    Permanent link to this record
    http://hdl.handle.net/10754/566165
    
    Metadata
    Show full item record
    Abstract
    High molecular weight iso-paraffinic molecules are found in conventional petroleum, Fischer-Tropsch (FT), and other alternative hydrocarbon fuels, yet fundamental combustion studies on this class of compounds are lacking. In the present work, ignition delay time measurements in 2,7-dimethyloctane/air were carried out behind reflected shock waves using conventional and constrained reaction volume (CRV) methods. The ignition delay time measurements covered the temperature range 666-1216K, pressure range 12-27atm, and equivalence ratio of 0.5 and 1. The ignition delay time temperatures span the low-, intermediate- and high-temperature regimes for 2,7-dimethyloctane (2,7-DMO) oxidation. Clear evidence of negative temperature coefficient behavior was observed near 800K. Fuel time-history measurements were also carried out in pyrolysis experiments in mixtures of 2000ppm 2,7-DMO/argon at pressures near 16 and 35atm, and in the temperature range of 1126-1455K. Based on the fuel removal rates, the overall 2,7-DMO decomposition rate constant can be represented with k =4.47×105 exp(-23.4[kcal/mol]/RT) [1/s]. Ethylene time-history measurements in pyrolysis experiments at 16atm are also provided. The current shock tube dataset was simulated using a novel chemical kinetic model for 2,7-DMO. The reaction mechanism includes comprehensive low- and high-temperature reaction classes with rate constants assigned using established rules. Comparisons between the simulated and experimental data show simulations reproduce the qualitative trends across the entire range of conditions tested. However, the present kinetic modeling simulations cannot quantitatively reproduce a number of experimental data points, and these are analyzed herein.
    Citation
    Li, S., Sarathy, S. M., Davidson, D. F., Hanson, R. K., & Westbrook, C. K. (2015). Shock tube and modeling study of 2,7-dimethyloctane pyrolysis and oxidation. Combustion and Flame, 162(5), 2296–2306. doi:10.1016/j.combustflame.2015.01.027
    Publisher
    Elsevier BV
    Journal
    Combustion and Flame
    DOI
    10.1016/j.combustflame.2015.01.027
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.combustflame.2015.01.027
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.