• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    An experimental and modeling study of n-octanol combustion

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Cai, Liming
    Uygun, Yasar
    Togbé, Casimir
    Pitsch, Heinz G.
    Olivier, Herbert
    Dagaut, P.
    Sarathy, Mani cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Physical Science and Engineering (PSE) Division
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/566072
    
    Metadata
    Show full item record
    Abstract
    This study presents the first investigation on the combustion chemistry of n-octanol, a long chain alcohol. Ignition delay times were determined experimentally in a high-pressure shock tube, and stable species concentration profiles were obtained in a jet stirred reactor for a range of initial conditions. A detailed kinetic model was developed to describe the oxidation of n-octanol at both low and high temperatures, and the model shows good agreement with the present dataset. The fuel's combustion characteristics are compared to those of n-alkanes and to short chain alcohols to illustrate the effects of the hydroxyl moiety and the carbon chain length on important combustion properties. Finally, the results are discussed in detail. © 2014 The Combustion Institute.
    Citation
    Cai, L., Uygun, Y., Togbé, C., Pitsch, H., Olivier, H., Dagaut, P., & Sarathy, S. M. (2015). An experimental and modeling study of n -octanol combustion. Proceedings of the Combustion Institute, 35(1), 419–427. doi:10.1016/j.proci.2014.05.088
    Sponsors
    This work was performed as part of the Cluster of Excellence "Tailor-Made Fuels from Biomass" which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities and as part of the collaborative research center (SFB) 1029 which is funded by the German Research Foundation (DFG). The work at KAUST was funded by the Clean Combustion Research Center. Co-author S.M.S. acknowledges funding from the TMFB Visiting Fellowship program. At CNRS, the research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 291049-2G-CSafe.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2014.05.088
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2014.05.088
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.