• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Sarathy, Mani cc
    Kukkadapu, Goutham
    Mehl, Marco
    Wang, Weijing
    Javed, Tamour cc
    Park, Sungwoo cc
    Oehlschlaeger, Matthew A.
    Farooq, Aamir cc
    Pitz, William J.
    Sung, Chihjen
    KAUST Department
    Chemical Engineering Program
    Chemical Kinetics & Laser Sensors Laboratory
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2015
    Permanent link to this record
    http://hdl.handle.net/10754/565985
    
    Metadata
    Show full item record
    Abstract
    Petroleum derived gasoline is the most used transportation fuel for light-duty vehicles. In order to better understand gasoline combustion, this study investigated the ignition propensity of two alkane-rich FACE (Fuels for Advanced Combustion Engines) gasoline test fuels and their corresponding PRF (primary reference fuel) blend in fundamental combustion experiments. Shock tube ignition delay times were measured in two separate facilities at pressures of 10, 20, and 40 bar, temperatures from 715 to 1500 K, and two equivalence ratios. Rapid compression machine ignition delay times were measured for fuel/air mixtures at pressures of 20 and 40 bar, temperatures from 632 to 745 K, and two equivalence ratios. Detailed hydrocarbon analysis was also performed on the FACE gasoline fuels, and the results were used to formulate multi-component gasoline surrogate mixtures. Detailed chemical kinetic modeling results are presented herein to provide insights into the relevance of utilizing PRF and multi-component surrogate mixtures to reproduce the ignition behavior of the alkane-rich FACE gasoline fuels. The two FACE gasoline fuels and their corresponding PRF mixture displayed similar ignition behavior at intermediate and high temperatures, but differences were observed at low temperatures. These trends were mimicked by corresponding surrogate mixture models, except for the amount of heat release in the first stage of a two-stage ignition events, when observed. © 2014 The Combustion Institute.
    Citation
    Sarathy, S. M., Kukkadapu, G., Mehl, M., Wang, W., Javed, T., Park, S., … Sung, C.-J. (2015). Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures. Proceedings of the Combustion Institute, 35(1), 249–257. doi:10.1016/j.proci.2014.05.122
    Sponsors
    The authors are grateful to Hendrik Muller (Saudi Aramco R&DC), Abdulla Algam (Saudi Aramco R&DC), Mr. Emad Alawi, and Nadim Hourani (KAUST) for the DHA results. The KAUST authors acknowledge funding support from the Clean Combustion Research Center and from Saudi Aramco under the FUELCOM program. The work at the University of Connecticut was supported as part of the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001198. The Rensselaer group was supported by the U.S. Air Force Office of Scientific Research (Grant No. FA9550-11-1-0261) with Dr. Chiping Li as technical monitor. The LLNL work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was supported by the U.S. Department of Energy, Office of Vehicle Technologies, Gurpreet Singh, program manager.
    Publisher
    Elsevier BV
    Journal
    Proceedings of the Combustion Institute
    DOI
    10.1016/j.proci.2014.05.122
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.proci.2014.05.122
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.