A comprehensive experimental and modeling study of 2-methylbutanol combustion
Type
ArticleAuthors
Park, Sungwoo
Mannaa, Ossama

KHALED, Fethi

Bougacha, Rafik
Mansour, Morkous S.

Farooq, Aamir

Chung, Suk Ho

Sarathy, Mani

KAUST Department
Chemical Engineering ProgramChemical Kinetics & Laser Sensors Laboratory
Clean Combustion Research Center
Combustion and Laser Diagnostics Laboratory
Combustion and Pyrolysis Chemistry (CPC) Group
Mechanical Engineering
Mechanical Engineering Program
Physical Science and Engineering (PSE) Division
Date
2015-05Permanent link to this record
http://hdl.handle.net/10754/565939
Metadata
Show full item recordAbstract
2-Methylbutanol (2-methyl-1-butanol) is one of several next-generation biofuels that can be used as an alternative fuel or blending component for combustion engines. This paper presents new experimental data for 2-methylbutanol, including ignition delay times in a high-pressure shock tube and premixed laminar flame speeds in a constant volume combustion vessel. Shock tube ignition delay times were measured for 2-methylbutanol/air mixtures at three equivalence ratios, temperatures ranging from 750 to 1250. K, and at nominal pressures near 20 and 40. bar. Laminar flame speed data were obtained using the spherically propagating premixed flame configuration at pressures of 1, 2, and 5. bar. A detailed chemical kinetic model for 2-methylbutanol oxidation was developed including high- and low-temperature chemistry based on previous modeling studies on butanol and pentanol isomers. The proposed model was tested against new and existing experimental data at pressures of 1-40. atm, temperatures of 740-1636. K, equivalence ratios of 0.25-2.0. Reaction path and sensitivity analyses were conducted for identifying key reactions at various combustion conditions, and to obtain better understanding of the combustion characteristics of larger alcohols.Citation
Park, S., Mannaa, O., Khaled, F., Bougacha, R., Mansour, M. S., Farooq, A., … Sarathy, S. M. (2015). A comprehensive experimental and modeling study of 2-methylbutanol combustion. Combustion and Flame, 162(5), 2166–2176. doi:10.1016/j.combustflame.2015.01.014Publisher
Elsevier BVJournal
Combustion and Flameae974a485f413a2113503eed53cd6c53
10.1016/j.combustflame.2015.01.014