Recent Submissions

  • Applications of Emerging Nanomaterials for Oily Wastewater Treatment

    Goh, P.S.; Ong, Chi Siang; Ng, B.C.; Ismail, Ahmad Fauzi (Elsevier, 2018-11-23)
    The huge volume of oily wastewater produced from the industries has resulted in alarming environmental pollution and resource usage problems. A wide range of conventional and emerging approaches have been established to effectively reduce all these pollutants to an acceptable level to discharge the treated wastewater for reuse. Lately, nanomaterials have shown great potential to address this issue based on their unique and exceptionally properties such as high surface area, superhydrophilicity/hydrophobicity and surface functionalities. This chapter discusses the application of emerging nanomaterials for oily wastewater treatment. The characteristics of these nanomaterials and their hybrid or nanocomposites for oily water treatment are discussed. Finally, a brief future outlook and concluding remarks are presented.
  • Optimization Strategy of Sustainable Concentrated Photovoltaic Thermal (CPVT) System for Cooling

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon (Springer Singapore, 2018-11-09)
    Renewable energy resources are susceptible to intermittent power supply, and their standalone operation has prime importance for steady power supply. Solar energy resources have high global availability and potential among all energy sources. Most of areas with high solar energy potential have either dry hot or tropical climate. A major portion of primary energy supply for such area is utilized in their cooling energy needs. In this chapter, a sustainable approach for cooling needs has been proposed using solar energy-based highly efficient concentrated photovoltaic (CPV). A combined cooling system, based upon mechanical vapour compression (MVC), and adsorption chillers have been considered. The MVC chiller utilizes the produced electricity by the third -generation multi-junction solar cells (MJCs). However, adsorption chiller is operated with thermal energy recovered from the cooling of CPV system, which also increases the system efficiency as high as 71%. To handle intermittency, hydrogen production is used primary energy storage system, along with the hot water storage. The complete system configuration is then optimized for standalone operation with optimum components size and minimum cost, using micro-genetic algorithm according to proposed optimization strategy.
  • Renewable Energy Storage and Its Application for Desalination

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon (Springer Singapore, 2018-11-09)
    The economic development has serious impact on the nexus between water, energy, and environment. This impact is even more severe in Non-Organization for Economic Cooperation and Development (non-OECD) countries due to improper resource management. It is predicted that energy demand will increase by more than 71% in non-OECD as compared to 18% in developed countries by 2040. In Gulf Cooperation Council countries, water and power sector consume almost half of primary energy produced. In the past, many studies were focused on renewable energies based on desalination processes to accommodate fivefold increase in demand by 2050 but they were not commercialized due to intermittent nature of renewable energy such as solar and wind. We proposed highly efficient energy storage material, magnesium oxide (MgO), system integrated with innovative hybrid desalination cycle for future sustainable water supplies. The condensation of Mg(OH)2 dehydration vapor during day operation with concentrated solar energy and exothermic hydration of MgO at night can produce 24 h thermal energy without any interruption. It was showed that Mg(OH)2 dehydration vapor condensation produces 120 °C and MgO hydration exothermic reaction produces 140 °C heat during day and night operation, respectively, corresponding to energy storage of 81 kJ/mol and 41 kJ/mol. The produced energy can be utilized to operate desalination cycle to reduce CO2 emission and to achieve COP21 goal. The proposed hybrid desalination cycle is successfully demonstrated by pilot experiments at KAUST. It was showed that MgO + MEDAD cycle can achieve performance over UPR = 200, one of the highest reported ever.
  • Combustion-Based Transportation in a Carbon-Constrained World—A Review

    Javed, Tamour; Ahmed, Ahfaz; Raman, Vallinayagam; Alquaity, Awad B. S.; Johansson, Bengt (Springer Singapore, 2018-11-01)
    The transportation sector accounts for around a quarter of global CO2 emissions and is powered predominantly by fossil-derived fuels. The regulatory framework is evolving globally to more stringent requirements for fuel efficiency and CO2 emissions, forcing the OEMs to adopt advanced powertrain technologies. Such changes are more evident in the light-duty road transportation sector compared to the heavy-duty road, marine and air transportation sectors. Here, a holistic review of the current and prospective regulations targeted at curbing transportation-based CO2 emissions is presented. For road transport, these include various government- and state-level policy initiatives such as the Corporate Average Fuel Economy (CAFE) and CO2 emission standards and the zero emission mandates. For marine and aviation sectors, these include the International Maritime Organization (IMO) and the International Civil Aviation Organization (ICAO) regulations and aspirations targeted at reducing the CO2 footprint. The compliance options for these regulations are evaluated using a combination of fuels, engines, and hybridization in each transportation sector. Furthermore, a brief overview of how OEMs are working toward achieving these targets is presented. An overview of several advanced spark and compression ignition engine technologies with the potential to improve the fuel economy and CO2 emissions is presented. Finally, an overview of major disruptions that are changing the road-based transportation is presented and a balanced life cycle based policy approach is advocated.
  • Concentrated Photovoltaic (CPV) for Rooftop—Compact System Approach

    Burhan, Muhammad; Shahzad, Muhammad Wakil; Ng, Kim Choon (Springer Singapore, 2018-11-01)
    The single-junction-based conventional PV panels are dominating almost the entire photovoltaic market. In addition, they can only offer a limited solar conversion efficiency due to limitations of the band gap of their single pn-junction. On the other hand, third-generation multi-junction solar cell offers the highest solar energy conversion efficiency as their multiple pn-junctions can absorb a larger portion of solar spectrum. Despite such high potential, their share in current photovoltaic market is still negligible, even though, they have been used in form of concentrated photovoltaic (CPV) systems to reduce the use of expensive solar cell material. The main reason for such low market share is due to the gigantic design of commercial PV system which is only suitable to install in the open desert regions, thereby limiting its customers and application scope. In this chapter, a compact CPV system design is discussed with the motivation for its rooftop application and installation. Moreover, the long-term performance of CPV is also compared with conventional PV system in tropical conditions to highlight its potential in low solar energy areas.
  • Chapter 17 - Carbon Geological Storage: Coupled Processes, Engineering and Monitoring

    Kim, Seunghee; Espinoza, D. Nicolas; Jung, Jongwon; Cha, Minsu; Santamarina, Carlos (Elsevier, 2018-09-14)
    Today’s energy concerns reflect the large anticipated increase in demand within the next generation, the current dependency on fossil fuels and climate implications, the geographic mismatch between resources and demand, and the disparity in associated time scales. The long-term geological storage of vast quantities of CO2 is a relatively new scientific and technological challenge, plagued with underlying coupled hydro-chemo-mechanical processes and potential emergent phenomena. Processes include: capillarity, density and viscous effects on flow; acidification, mineral dissolution, and ensuing changes in permeability; phase transformations (and CO2-CH4 exchange in hydrates); and stress changes. These processes are involved in the analysis of CO2 storage in saline aquifers, coal seams, depleted reservoirs, and in clathrates. Furthermore, the understanding of underlying processes guides monitoring (active: seismic and electromagnetic; passive: seismic, deformation, thermal) and may lead to improved efficiency and leakage-sealing strategies. Dimensionless ratios help identify the domain for the various dominant processes that govern CO2 geo-storage.
  • Reading the Book of Life – Omics as a Universal Tool Across Disciplines

    Brüwer, Jan David; Buck-Wiese, Hagen (Springer International Publishing, 2018-08-30)
    In the last centuries, new high-throughput technologies, including sequencing and mass-spectrometry, have emerged and are constantly refurbished in order to decipher the molecular code of life. In this review, we summarize the physiological background from genes via transcriptome to proteins and metabolites and discuss the variety of dimensions in which a biological entity may be studied. Herein, we emphasize regulatory processes which underlie the plasticity of molecular profiles on different ome layers. We discuss the four major fields of omic research, namely genomics, transcriptomics, proteomics, and metabolomics, by providing specific examples and case studies for (i) the assessment of functionality on molecular, organism, and community level; (ii) the possibility to use omic research for categorization and systematic efforts; and (iii) the evaluation of responses to environmental cues with a special focus on anthropogenic influences. Thereby, we exemplify the knowledge gains attributable to the integration of information from different omes and the enhanced precision in predicting the phenotype. Lastly, we highlight the advantages of combining multiple omics layers in assessing the complexity of natural systems as meta-communities and -organisms.
  • For a World Without Boundaries: Connectivity Between Marine Tropical Ecosystems in Times of Change

    Earp, Hannah S.; Prinz, Natalie; Cziesielski, Maha J.; Andskog, Mona (Springer International Publishing, 2018-08-30)
    Tropical mangrove forests, seagrass beds, and coral reefs are among the most diverse and productive ecosystems on Earth. Their evolution in dynamic, and ever-changing environments means they have developed a capacity to withstand and recover (i.e., are resilient) from disturbances caused by anthropogenic activities and climatic perturbations. Their resilience can be attributed, in part, to a range of cross-ecosystem interactions whereby one ecosystem creates favorable conditions for the maintenance of its neighbors. However, in recent decades, expanding human populations have augmented anthropogenic activities and driven changes in global climate, resulting in increased frequencies and intensities of disturbances to these ecosystems. Many contemporary environments are failing to regenerate following these disturbances and consequently, large-scale degradation and losses of ecosystems on the tropical seascape are being observed. This chapter reviews the wealth of available literature focused on the tropical marine seascape to investigate the degree of connectivity between its ecosystems and how cross-ecosystem interactions may be impacted by ever-increasing anthropogenic activities and human-induced climate change. Furthermore, it investigates how disruption and/or loss of these cross-ecosystem interactions may impact the success of neighboring ecosystems and consequently, the highly-valued ecosystem services to which these ecosystems give rise. The findings from this review highlight the degree of connectivity between mangroves, seagrasses and coral reefs, and emphasizes the need for a holistic, seascape-wide research approach to successfully protect and preserve these critically important ecosystems and their associated services for future generations.
  • Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley

    Saade, Stephanie; Negrão, Sónia; Plett, Darren; Garnett, Trevor; Tester, Mark (Springer International Publishing, 2018-08-18)
    Barley is a resilient crop plant with higher tolerance than other cereal plants for several types of abiotic stress. In this chapter, we describe the genetic components underlying barley’s response to abiotic stresses, including soil acidity, boron toxicity, soil salinity, drought, temperature, and nutrient deficiency. We describe typical symptoms observed in barley in response to these stresses. We enumerate the major qualitative trait loci (QTLs) identified so far, such as FR-H1 and FR-H2 for low-temperature tolerance. We also discuss candidate genes that are the basis for stress tolerance, such as HVP10, which underlies the HvNax3 locus for salinity tolerance. Although knowledge about barley’s responses to abiotic stresses is far from complete, the genetic diversity in cultivated barley and its close wild relatives could be further exploited to improve stress tolerance. To this end, the release of the barley high-quality reference genome provides a powerful tool to facilitate identification of new genes underlying barley’s relatively high tolerance to several abiotic stresses.
  • Efficient Estimation of Dynamic Density Functions with Applications in Data Streams

    Qahtan, Abdulhakim; Wang, Suojin; Zhang, Xiangliang (Springer International Publishing, 2018-07-28)
    Recently, many applications such as network monitoring, traffic management and environmental studies generate huge amount of data that cannot fit in the computer memory. Data of such applications arrive continuously in the form of streams. The main challenges for mining data streams are the high speed and the large volume of the arriving data. A typical solution to tackle the problems of mining data streams is to learn a model that fits in the computer memory. However, the underlying distributions of the streaming data change over time in unpredicted scenarios. In this sense, the learned models should be updated continuously and rely more on the most recent data in the streams. In this chapter, we present an online density estimator that builds a model called KDE-Track for characterizing the dynamic density of the data streams. KDE-Track summarizes the distribution of a data stream by estimating the Probability Density Function (PDF) of the stream at a set of resampling points. KDE-Track is shown to be more accurate (as reflected by smaller error values) and more computationally efficient (as reflected by shorter running time) when compared with existing density estimation techniques. We demonstrate the usefulness of KDE-Track in visualizing the dynamic density of data streams and change detection.
  • Error-Bounded Approximation of Data Stream: Methods and Theories

    Xie, Qing; Pang, Chaoyi; Zhou, Xiaofang; Zhang, Xiangliang; Deng, Ke (Springer International Publishing, 2018-07-28)
    Since the development of sensor network and Internet of Things, the volume of data is rapidly increasing and the streaming data has attracted much attention recently. To efficiently process and explore data streams, the compact data representation is playing an important role, since the data approximations other than the original data items are usually applied in many stream mining tasks, such as clustering, classification, and correlation analysis. In this chapter, we focus on the maximum error-bounded approximation of data stream, which represents the streaming data with constrained approximation error on each data point. There are two criteria for the approximation solution: self-adaption over time for varied error bound and real-time processing. We reviewed the existing data approximation techniques and summarized some essential theories such as optimization guarantee. Two optimal linear-time algorithms are introduced to construct error-bounded piecewise linear representation for data stream. One generates the line segments by data convex analysis, and the other one is based on the transformed space, which can be extended to a general model. We theoretically analyzed and compared these two different spaces, and proved the theoretical equivalence between them, as well as the two algorithms.
  • Review of In Vitro Toxicity of Nanoparticles and Nanorods—Part 2

    Perez, Jose E.; Alsharif, Nouf; Martínez-Banderas, Aldo I.; Othman, Basmah; Merzaban, Jasmeen; Ravasi, Timothy; Kosel, Jürgen (InTech, 2018-07-25)
    The specific use of engineered nanostructures in biomedical applications has become very attractive, due to their ability to interface and target specific cells and tissues to execute their functions. Additionally, there is continuous progress in research on new nanostructures with unique optical, magnetic, catalytic and electrochemical properties that can be exploited for therapeutic or diagnostic methods. On the other hand, as nanostructures become widely used in many different applications, the unspecific exposure of humans to them is also unavoidable. Therefore, studying and understanding the toxicity of such materials are of increasing importance. Previously published reviews regarding the toxicological effects of nanostructures focus mostly on the cytotoxicity of nanoparticles and their internalization, activated signaling pathways and cellular response. Here, the most recent studies on the invitro cytotoxicity of NPs, nanowires and nanorods for biomedical applications are reviewed and divided into two parts. The first part considers nonmagnetic metallic and magnetic nanostructures, while, the second part covers carbon structures and semiconductors. The factors influencing the toxicity of these nanostructures are elaborated to help elucidate the effects of these nanomaterials on cells, which is a prerequisite for their safe clinical use.
  • Chapter 6. DFT Modelling Tools in CO2 Conversion: Reaction Mechanism Screening and Analysis

    Azofra, Luis Miguel; Sun, Chenghua (Royal Society of Chemistry, 2018-05-21)
    The computer-aided molecular modelling of the catalytic conversion of carbon dioxide (CO) intogreen' fuels offers a comprehensive view of the chemical events taking place during the process. This provides crucial information aboutwhere',how', and 'why' and also allows the in silico hypothesising of those promising catalysts before the experimental testing of their catalytic performance. Among the variety of quantum mechanical approaches, well-resolved density functional theory (DFT) has been proven as a fast, robust, and powerful methodology for such purposes. In the present chapter, we review different fundamental aspects of the chemical reactivity with special emphasis on the theoretical point-of-view as well as fully treating the thermodynamics, kinetics, and additional aspects for the DFT modelling of the CO conversion mechanism screening through the electrochemical approach.
  • In Situ Spectroscopic Ellipsometry in the Field of Industrial Membranes

    Ogieglo, Wojciech (Springer International Publishing, 2018-05-06)
    Industrial membranes are playing an ever increasing role in the ongoing and necessary transition of our society towards more sustainable growth and development. Already today membranes offer more energy efficient alternatives to the traditional often very energy intensive industrial separation processes such as (cryogenic) distillation or crystallization. For many years reverse osmosis membranes have offered a viable method for the production of potable water via desalination processes and their significance continuously increases. Recently, membrane technology has been demonstrated to play a significant role in potential methods to generate or store energy on an industrial scale. For molecular separations often the key for an efficient membrane operation often lies in the application of an (ultra-) thin organic polymer, inorganic or hybrid selective layer whose interaction with the separated mixture defines the membrane performance. Ellipsometry has started gaining increasing attention in this area due to its large potential to conduct in-situ, non-destructive and very precise analysis of the film-fluid interactions. In this chapter, we aim to review the important recent developments in the application of ellipsometry in industrial membrane-related studies. We briefly introduce the basics of membrane science and discuss the used experimental setups and optical models. Further we focus on fundamental studies of sorption, transport and penetrant-induced phenomena in thin films exposed to organic solvents or high pressure gases. The application of in-situ ellipsometry is discussed for studies of new, promising membrane materials and the use of the technique for emerging direct studies of operating membranes is highlighted.
  • Adsorption desalination—Principles, process design, and its hybrids for future sustainable desalination

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ang, Li; Ng, Kim Choon (Elsevier, 2018-05-03)
    The energy, water, and environment nexus is a crucial factor when considering the future development of desalination plants or industry in water-stressed economies. The new generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increases around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available heat-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as an increase in water production can be expected. The advent of MED with AD cycles, or simply called the MED-AD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-stream at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60°C and 80°C. In this chapter, the authors have reported their pioneered research on aspects of AD and related hybrid MED-AD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concepts, the authors examine the cost apportionment of fuel cost by the quality or exergy of the working steam for such cogeneration configurations.
  • Impact of MCT1 Haploinsufficiency on the Mouse Retina

    Peachey, Neal S.; Yu, Minzhong; Han, John Y. S.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Philp, Nancy J. (Springer International Publishing, 2018-05-02)
    The monocarboxylate transporter 1 (MCT1) is highly expressed in the outer retina, suggesting that it plays a critical role in photoreceptors. We examined MCT1+/− heterozygotes, which express half of the normal complement of MCT1. The MCT1+/− retina developed normally and retained normal function, indicating that MCT1 is expressed at sufficient levels to support outer retinal metabolism.
  • TDZ-Induced Plant Regeneration in Jatropha curcas: A Promising Biofuel Plant

    Kumar, Nitish; Bhatt, Vacha D.; Mastan, Shaik G.; Reddy, Muppala P. (Springer Singapore, 2018-03-23)
    In recent years, Jatropha curcas has pronounced attention due to its capacity of production of biodiesel. Uniform large-scale propagation of J. curcas is one of the significant keys that will eventually decide victory. Direct regeneration is one of the methods which help in the production of uniform and homogenous plant, and TDZ plays an important role in the production of plantlets by direct organogenesis in several number of plant species including J. curcas. Measuring the economical importance of J. curcas and the role of TDZ in shoot regeneration, the present book chapter briefly reviews the impact of TDZ on shoot bud induction from various explants of J. curcas.
  • Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon (InTech, 2018-03-07)
    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.
  • Simple Finite Sums

    Alabdulmohsin, Ibrahim M. (Springer International Publishing, 2018-03-07)
    We will begin our treatment of summability calculus by analyzing what will be referred to, throughout this book, as simple finite sums. Even though the results of this chapter are particular cases of the more general results presented in later chapters, they are important to start with for a few reasons. First, this chapter serves as an excellent introduction to what summability calculus can markedly accomplish. Second, simple finite sums are encountered more often and, hence, they deserve special treatment. Third, the results presented in this chapter for simple finite sums will, themselves, be used as building blocks for deriving the most general results in subsequent chapters. Among others, we establish that fractional finite sums are well-defined mathematical objects and show how various identities related to the Euler constant as well as the Riemann zeta function can actually be derived in an elementary manner using fractional finite sums.
  • Analytic Summability Theory

    Alabdulmohsin, Ibrahim M. (Springer International Publishing, 2018-03-07)
    The theory of summability of divergent series is a major branch of mathematical analysis that has found important applications in engineering and science. It addresses methods of assigning natural values to divergent sums, whose prototypical examples include the Abel summation method, the Cesaro means, and the Borel summability method. As will be established in subsequent chapters, the theory of summability of divergent series is intimately connected to the theory of fractional finite sums. In this chapter, we introduce a generalized definition of series as well as a new summability method for computing the value of series according to such a definition. We show that the proposed summability method is both regular and linear, and that it arises quite naturally in the study of local polynomial approximations of analytic functions. The materials presented in this chapter will be foundational to all subsequent chapters.

View more