• Login
    View Item 
    •   Home
    • Research
    • Conference Papers
    • View Item
    •   Home
    • Research
    • Conference Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Comparison of soot formation for diesel and jet-a in a constant volume combustion chamber using two-color pyrometry

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Conference Paper
    Authors
    Jing, Wei
    Roberts, William L. cc
    Fang, Tiegang
    KAUST Department
    Clean Combustion Research Center
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    high-pressure combustion (HPC) Research Group
    Date
    2014-04-01
    Permanent link to this record
    http://hdl.handle.net/10754/564906
    
    Metadata
    Show full item record
    Abstract
    The measurement of the two-color line of sight soot and KL factor for NO.2 diesel and jet-A fuels was conducted in an optical constant volume combustion chamber by using a high speed camera under 1000 K ambient temperature and varied oxygen concentration conditions. The ambient conditions were set as follows: four oxygen cases including 10%, 15%, 18% and 21% at 1000 K ambient temperature. KL factor and soot temperature were determined based on the two-color pyrometry technique using two band-pass filters with wavelengths of 650 nm and 550 nm. The results show that low soot temperature is observed in the upstream inner flame along the centerline, which is surrounded by high soot temperature regions, and a high KL factor is found in the same region with a low soot temperature. The results under different times suggest that soot temperature is higher for high O2 conditions during the entire flame development; meanwhile, both integrated KL factor and soot area decrease with the increase of O2 concentration. The two fuels share a similar trend of soot temperature and KL factor, however, diesel flame has a higher soot temperature and a larger high soot temperature area compared to jet-A flame. On the other hand, diesel flame shows a lower soot level during the quasi-steady state with a higher total soot level at the end of the combustion under low O2 conditions. A lower O2 concentration range from 10% to 15% is expected to have the possibility to achieve a simultaneous reduction of soot and NOx in sooting flames under the 1000 K ambient temperature condition. Copyright © 2014 SAE International.
    Citation
    Jing, W., Roberts, W., & Fang, T. (2014). Comparison of Soot Formation For Diesel and Jet-A in a Constant Volume Combustion Chamber Using Two-Color Pyrometry. SAE Technical Paper Series. doi:10.4271/2014-01-1251
    Publisher
    SAE International
    Journal
    SAE Technical Paper Series
    Conference/Event name
    SAE 2014 World Congress and Exhibition
    DOI
    10.4271/2014-01-1251
    ae974a485f413a2113503eed53cd6c53
    10.4271/2014-01-1251
    Scopus Count
    Collections
    Conference Papers; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.