Type
Conference PaperKAUST Department
Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) DivisionElectrical Engineering Program
Date
2013-05Permanent link to this record
http://hdl.handle.net/10754/564710
Metadata
Show full item recordAbstract
In this paper we introduce a self interference (SI) estimation and minimisation technique for amplify and forward relays. Relays are used to help forward signals between a transmitter and a receiver. This helps increase the signal coverage and reduce the required transmitted signal power. One problem that faces relays communications is the leaked signal from the relay's output to its input. This will cause an SI problem where the new received signal at the relay's input will be added with the unwanted leaked signal from the relay's output. A Solution is proposed in this paper to estimate and minimise this SI which is based upon using a tapped filter at the destination. To get the optimum weights for this tapped filter, some channel parameters must be estimated first. This is performed blindly at the destination without the need of any training. This channel parameter estimation method is named the blind-self-interference-channel-estimation (BSICE) method. The next step in the proposed solution is to estimate the tapped filter's weights. This is performed by minimising the mean squared error (MSE) at the destination. This proposed method is named the MSE-Optimum Weight (MSE-OW) method. Simulation results are provided in this paper to verify the performance of BSICE and MSE-OW methods. © 2013 IEEE.Citation
Al-Jazzar, S. O., & Al-Naffouri, T. (2013). Relay self interference minimisation using tapped filter. 2013 8th International Workshop on Systems, Signal Processing and Their Applications (WoSSPA). doi:10.1109/wosspa.2013.6602383Journal
2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)Conference/Event name
2013 8th International Workshop on Systems, Signal Processing and Their Applications, WoSSPA 2013ISBN
9781467355407ae974a485f413a2113503eed53cd6c53
10.1109/WoSSPA.2013.6602383