Show simple item record

dc.contributor.authorAtminas, Aistis
dc.contributor.authorLozin, Vadim V.
dc.contributor.authorMoshkov, Mikhail
dc.date.accessioned2015-08-04T07:13:11Z
dc.date.available2015-08-04T07:13:11Z
dc.date.issued2013-04-05
dc.identifier.isbn9783642370632
dc.identifier.issn03029743
dc.identifier.doi10.1007/978-3-642-37064-9-8
dc.identifier.urihttp://hdl.handle.net/10754/564707
dc.description.abstractA language is factorial if it is closed under taking factors (i.e. contiguous subwords). Every factorial language can be described by an antidictionary, i.e. a minimal set of forbidden factors. We show that the problem of deciding whether a factorial language given by a finite antidictionary is well-quasi-ordered under the factor containment relation can be solved in polynomial time. © 2013 Springer-Verlag Berlin Heidelberg.
dc.publisherSpringer Verlag
dc.subjectfactorial language
dc.subjectpolynomial-time algorithm
dc.subjectwell-quasi-ordering
dc.titleDeciding WQO for factorial languages
dc.typeConference Paper
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentExtensions of Dynamic Programming, Machine Learning and Discrete Optimization Research Group
dc.identifier.journalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.conference.date2 April 2013 through 5 April 2013
dc.conference.name7th International Conference on Language and Automata Theory and Applications, LATA 2013
dc.conference.locationBilbao
dc.contributor.institutionDIMAP, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
kaust.personMoshkov, Mikhail


This item appears in the following Collection(s)

Show simple item record