Experimental and kinetic modeling study of 3-methylheptane in a jet-stirred reactor
Type
ArticleAuthors
Karsenty, FlorentSarathy, Mani

Togbé, Casimir
Westbrook, Charles K.
Dayma, Guillaume
Dagaut, P.
Mehl, Marco
Pitz, William J.
KAUST Department
Biological and Environmental Sciences and Engineering (BESE) DivisionChemical Engineering Program
Clean Combustion Research Center
Combustion and Pyrolysis Chemistry (CPC) Group
Physical Science and Engineering (PSE) Division
Date
2012-08-03Online Publication Date
2012-08-03Print Publication Date
2012-08-16Permanent link to this record
http://hdl.handle.net/10754/564592
Metadata
Show full item recordAbstract
Improving the combustion of conventional and alternative fuels in practical applications requires the fundamental understanding of large hydrocarbon combustion chemistry. The focus of the present study is on a high-molecular-weight branched alkane, namely, 3-methylheptane, oxidized in a jet-stirred reactor. This fuel, along with 2-methylheptane, 2,5-dimethylhexane, and n-octane, are candidate surrogate components for conventional diesel fuels derived from petroleum, synthetic Fischer-Tropsch diesel and jet fuels derived from coal, natural gas, and/or biomass, and renewable diesel and jet fuels derived from the thermochemical treatment of bioderived fats and oils. This study presents new experimental results along with a low- and high-temperature chemical kinetic model for the oxidation of 3-methylheptane. The proposed model is validated against these new experimental data from a jet-stirred reactor operated at 10 atm, over the temperature range of 530-1220 K, and for equivalence ratios of 0.5, 1, and 2. Significant effort is placed on the understanding of the effects of methyl substitution on important combustion properties, such as fuel reactivity and species formation. It was found that 3-methylheptane reacts more slowly than 2-methylheptane at both low and high temperatures in the jet-stirred reactor. © 2012 American Chemical Society.Citation
Karsenty, F., Sarathy, S. M., Togbé, C., Westbrook, C. K., Dayma, G., Dagaut, P., … Pitz, W. J. (2012). Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. Energy & Fuels, 26(8), 4680–4689. doi:10.1021/ef300852wSponsors
This work was performed under the auspices of the U.S. Department of Energy by the LLNL under Contract DE-AC52-07NA27344. The work at LLNL was supported by the Office of Naval Research (program manager Sharon Beermann-Curtin) and the Office of Vehicle Technologies, U.S. Department of Energy (program manager Gurpreet Singh). At CNRS, the research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 291049-2G-CSafe. S. M. Sarathy acknowledges fellowship support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and research funding from the King Abdullah University of Science and Technology.Publisher
American Chemical Society (ACS)Journal
Energy & Fuelsae974a485f413a2113503eed53cd6c53
10.1021/ef300852w