• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Some practical considerations in finite element-based digital image correlation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Bo
    Pan, Bing
    Lubineau, Gilles cc
    KAUST Department
    Composite and Heterogeneous Material Analysis and Simulation Laboratory (COHMAS)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2015-04-20
    Online Publication Date
    2015-04-20
    Print Publication Date
    2015-10
    Permanent link to this record
    http://hdl.handle.net/10754/564201
    
    Metadata
    Show full item record
    Abstract
    As an alternative to subset-based digital image correlation (DIC), finite element-based (FE-based) DIC method has gained increasing attention in the experimental mechanics community. However, the literature survey reveals that some important issues have not been well addressed in the published literatures. This work therefore aims to point out a few important considerations in the practical algorithm implementation of the FE-based DIC method, along with simple but effective solutions that can effectively tackle these issues. First, to better accommodate the possible intensity variations of the deformed images practically occurred in real experiments, a robust zero-mean normalized sum of squared difference criterion, instead of the commonly used sum of squared difference criterion, is introduced to quantify the similarity between reference and deformed elements in FE-based DIC. Second, to reduce the bias error induced by image noise and imperfect intensity interpolation, low-pass filtering of the speckle images with a 5×5 pixels Gaussian filter prior to correlation analysis, is presented. Third, to ensure the iterative calculation of FE-based DIC converges correctly and rapidly, an efficient subset-based DIC method, instead of simple integer-pixel displacement searching, is used to provide accurate initial guess of deformation for each calculation point. Also, the effects of various convergence criteria on the efficiency and accuracy of FE-based DIC are carefully examined, and a proper convergence criterion is recommended. The efficacy of these solutions is verified by numerical and real experiments. The results reveal that the improved FE-based DIC offers evident advantages over existing FE-based DIC method in terms of accuracy and efficiency. © 2015 Elsevier Ltd. All rights reserved.
    Citation
    Wang, B., Pan, B., & Lubineau, G. (2015). Some practical considerations in finite element-based digital image correlation. Optics and Lasers in Engineering, 73, 22–32. doi:10.1016/j.optlaseng.2015.03.010
    Publisher
    Elsevier BV
    Journal
    Optics and Lasers in Engineering
    DOI
    10.1016/j.optlaseng.2015.03.010
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.optlaseng.2015.03.010
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.