Show simple item record

dc.contributor.authorAit-Haddou, Rachid
dc.contributor.authorGoldman, Ron
dc.date.accessioned2015-08-03T12:36:08Z
dc.date.available2015-08-03T12:36:08Z
dc.date.issued2015-06-07
dc.identifier.issn00963003
dc.identifier.doi10.1016/j.amc.2015.05.068
dc.identifier.urihttp://hdl.handle.net/10754/564199
dc.description.abstractWe show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
dc.publisherElsevier BV
dc.subject(ω|q)-Bernstein bases
dc.subjectDegree reduction
dc.subjectDiscrete least squares
dc.subjectLittle q-Legendre polynomials
dc.subjectq-Bernstein bases
dc.subjectq-Hahn polynomials
dc.titleBest polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
dc.typeArticle
dc.contributor.departmentVisual Computing Center (VCC)
dc.identifier.journalApplied Mathematics and Computation
dc.contributor.institutionDepartment of Computer Science, Rice University, Houston, TX, United States
kaust.personAit-Haddou, Rachid
dc.date.published-online2015-06-07
dc.date.published-print2015-09


This item appears in the following Collection(s)

Show simple item record