Show simple item record

dc.contributor.authorLimongi, Tania
dc.contributor.authorSchipani, Rossana
dc.contributor.authorDi Vito, Anna
dc.contributor.authorGiugni, Andrea
dc.contributor.authorFrancardi, Marco
dc.contributor.authorTorre, Bruno
dc.contributor.authorAllione, Marco
dc.contributor.authorMiele, Ermanno
dc.contributor.authorMalara, Natalia Maria
dc.contributor.authorAlrasheed, Salma
dc.contributor.authorRaimondo, Raffaella
dc.contributor.authorCandeloro, Patrizio
dc.contributor.authorMollace, Vincenzo
dc.contributor.authorDi Fabrizio, Enzo M.
dc.date.accessioned2015-08-03T12:35:17Z
dc.date.available2015-08-03T12:35:17Z
dc.date.issued2015-06
dc.identifier.issn01679317
dc.identifier.doi10.1016/j.mee.2015.02.030
dc.identifier.urihttp://hdl.handle.net/10754/564178
dc.description.abstractMaterial science, cell biology, and engineering are all part of the research field of tissue engineering. It is the application of knowledge, methods and instrumentations of engineering and life science to the development of biocompatible solutions for repair and/or replace tissues and damaged organs. Last generation microfabrication technologies utilizing natural and synthetic biomaterials allow the realization of scaffolds resembling tissue-like structures as skin, brain, bones, muscles, cartilage and blood vessels. In this work we describe an effective and simple micromolding fabrication process allowing the realization of 3D polycaprolactone (PCL) scaffold for human neural stem cells (hNSC) culture. Scanning Electron Microscopy has been used to investigate the micro and nano features characterizing the surface of the device. Immunofluorescence analysis showed how, after seeding cells onto the substrate, healthy astrocytes grew up in a well-organized 3D network. Thus, we proposed this effective fabrication method for the production of nanopatterned PCL pillared scaffold providing a biomimetic environment for the growth of hNSC, a promising and efficient means for future applications in tissue engineering and regenerative medicine.
dc.publisherElsevier BV
dc.subjectBiocompatible substrate
dc.subjectHuman stem cells
dc.subjectMicrofabrication technique
dc.subjectNanostructured PCL pillars
dc.subjectNeural networks
dc.titlePhotolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications
dc.typeArticle
dc.contributor.departmentPhysical Sciences and Engineering (PSE) Division
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.contributor.departmentMaterials Science and Engineering Program
dc.identifier.journalMicroelectronic Engineering
dc.contributor.institutionDepartment of Experimental and Clinical Medicine, University of Catanzaro Magna Graecia, University Campus Salvatore VenutaGermaneto, Catanzaro, Italy
dc.contributor.institutionIstituto Italiano di Tecnologia (IIT), via Morego 30Genova, Italy
dc.contributor.institutionDepartment of Health Science, University Magna Graecia of Catanzaro, Complesso Ninì BarbieriRoccelletta di Borgia, Italy
dc.contributor.institutionBIONEM, Department of Experimental and Clinical Medicine, University of Magna Graecia Viale EuropaGermaneto, 88100 Catanzaro, Italy
kaust.personLimongi, Tania
kaust.personBatra, Nitin M
kaust.personGiugni, Andrea
kaust.personFrancardi, Marco
kaust.personTorre, Bruno
kaust.personAllione, Marco
kaust.personDi Fabrizio, Enzo M.
kaust.personAlrasheed, Salma
kaust.personRaimondo, Raffaella


This item appears in the following Collection(s)

Show simple item record