Show simple item record

dc.contributor.authorLim, Seungjae
dc.contributor.authorKim, Minkuk
dc.contributor.authorPark, Jeong
dc.contributor.authorFujita, Osamu
dc.contributor.authorChung, Suk Ho
dc.date.accessioned2015-08-03T12:33:27Z
dc.date.available2015-08-03T12:33:27Z
dc.date.issued2015-04
dc.identifier.issn00102180
dc.identifier.doi10.1016/j.combustflame.2014.10.009
dc.identifier.urihttp://hdl.handle.net/10754/564131
dc.description.abstractThe effect of electric field on the characteristics of flame spread along a polyethylene (PE) insulated electrical wire was investigated experimentally by varying the AC frequency and voltage applied to the wire. The results showed that the flame spread rate was accelerated due to the convergence of electric flux near the end of wire, having three distinct regimes depending on applied voltage. In each regime, several subregimes could be identified depending on AC frequency. Flame shape (height and width) and slanted direction of the spreading flame were influenced differently. Fuel-vapor jets were ejected from the molten PE surface even for the baseline case without the application of an electric field; this could be attributed to the bursting of fuel vapor bubbles generated from internal boiling at the molten PE surface. An internal circulation of molten-PE was also observed as a result of non-uniform heating by the spreading flame. In the high voltage regime with a high AC frequency, excessive dripping of molten PE led to flame extinction.
dc.description.sponsorshipThe work was supported by AEA Project/KAUST, by Space Core Technology Development Project/NRF (2011-15), and by JAXA as the candidate experiment for the second phase utilization of JEM/ISS entitled "Quantitative Description of Gravity Impact on Solid Material Flammability as a base of Fire Safety in Space" as well as JAXA Research Working Group to promote space utilization.
dc.publisherElsevier BV
dc.subjectAC electric field
dc.subjectElectrical wire
dc.subjectFlame spread
dc.subjectInternal circulation
dc.titleFlame spread over electrical wire with AC electric fields: Internal circulation, fuel vapor-jet, spread rate acceleration, and molten insulator dripping
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentCombustion and Laser Diagnostics Laboratory
dc.contributor.departmentMechanical Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalCombustion and Flame
dc.contributor.institutionDepartment of Mechanical Engineering, Pukyong National UniversityBusan, South Korea
dc.contributor.institutionEnvironmental and Energy Systems Research Division, Korea Institute of Machinery and MaterialsDaejeon, South Korea
dc.contributor.institutionDivision of Mechanical and Science, Hokkaido UniversitySapporo, Japan
kaust.personChung, Suk Ho


This item appears in the following Collection(s)

Show simple item record