Show simple item record

dc.contributor.authorGao, Wenyang
dc.contributor.authorCai, Rong
dc.contributor.authorPham, Tony T.
dc.contributor.authorForrest, Katherine A.
dc.contributor.authorHogan, Adam
dc.contributor.authorNugent, Patrick S.
dc.contributor.authorWilliams, Kia R.
dc.contributor.authorWojtas, Łukasz
dc.contributor.authorLuebke, Ryan
dc.contributor.authorWeselinski, Lukasz Jan
dc.contributor.authorZaworotko, Michael J.
dc.contributor.authorSpace, Brian
dc.contributor.authorChen, Yusheng
dc.contributor.authorEddaoudi, Mohamed
dc.contributor.authorShi, Xiaodong
dc.contributor.authorMa, Shengqian
dc.date.accessioned2015-08-03T12:32:38Z
dc.date.available2015-08-03T12:32:38Z
dc.date.issued2015-03-13
dc.identifier.citationGao, W.-Y., Cai, R., Pham, T., Forrest, K. A., Hogan, A., Nugent, P., … Ma, S. (2015). Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal–Organic Frameworks. Chemistry of Materials, 27(6), 2144–2151. doi:10.1021/acs.chemmater.5b00084
dc.identifier.issn08974756
dc.identifier.doi10.1021/acs.chemmater.5b00084
dc.identifier.urihttp://hdl.handle.net/10754/564111
dc.description.abstractCopper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.
dc.description.sponsorshipThe authors acknowledge NSF (DMR-1352065) and USF for financial support of this work. B.S. acknowledges the National Science Foundation (Award No. CHE-1152362), the computational resources that were made available by an XSEDE Grant (No. TG-DMR090028), and the use of the services provided by Research Computing at the University of South Florida. X.S. thanks NSF for the financial support (CHE-0844602). The single-crystal X-ray diffraction of rht-MOF-tri and rht-MOF-pyr was carried out at the Advanced Photon Source on beamline 15-ID-B of ChemMatCARS Sector 15, supported by the National Science Foundation under grant number NSF/CHE-1346572. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. M.E. acknowledges the financial support from King Abdullah University of Science and Technology.
dc.publisherAmerican Chemical Society (ACS)
dc.titleRemote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks
dc.typeArticle
dc.contributor.departmentAdvanced Membranes and Porous Materials Research Center
dc.contributor.departmentChemical Science Program
dc.contributor.departmentFunctional Materials Design, Discovery and Development (FMD3)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalChemistry of Materials
dc.contributor.institutionDepartment of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205Tampa, FL, United States
dc.contributor.institutionDepartment of Chemistry, West Virginia UniversityMorgantown, WV, United States
dc.contributor.institutionChemMatCARS, Center for Advanced Radiation Sources, University of Chicago, 9700 S. Cass AvenueArgonne, IL, United States
kaust.personLuebke, Ryan
kaust.personWeselinski, Lukasz Jan
kaust.personEddaoudi, Mohamed
dc.relation.issupplementedbyDOI:10.5517/ccyp2nb
dc.relation.issupplementedbyDOI:10.5517/cc14m7qq
display.relations<b> Is Supplemented By:</b> <br/> <ul><li><i>[Dataset]</i> <br/> Gao, W.-Y., Cai, R., Pham, T., Forrest, K. A., Hogan, A., Nugent, P., … Ma, S. (2015). CCDC 884202: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/ccyp2nb. DOI: <a href="https://doi.org/10.5517/ccyp2nb">10.5517/ccyp2nb</a> HANDLE: <a href="http://hdl.handle.net/10754/624716">10754/624716</a></li><li><i>[Dataset]</i> <br/> Gao, W.-Y., Cai, R., Pham, T., Forrest, K. A., Hogan, A., Nugent, P., … Ma, S. (2015). CCDC 1061183: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/cc14m7qq. DOI: <a href="https://doi.org/10.5517/cc14m7qq">10.5517/cc14m7qq</a> HANDLE: <a href="http://hdl.handle.net/10754/624429">10754/624429</a></li></ul>
dc.date.published-online2015-03-13
dc.date.published-print2015-03-24


This item appears in the following Collection(s)

Show simple item record